ELEPHANTS NEVER FORGET

Connect with Your Students using Math Mnemonics, Word Games, and Songs
Using Direct Instruction

- Telling
- Linking
- Modeling
- Providing guided practice (battle buddies)
- Giving feedback
- Evaluating (1–2–3–4)
- Providing independent practice (HLS)

How do you know if an elephant has been in your refrigerator?
Need for Mnemonics

- Memorizing factual information is absolutely essential for success in school.

- It is also true that students with learning problems have been consistently shown to have particular difficulties remembering academic content.

By the footprints in the butter.
Mnemonics

- What are they, and how are they used?
- Need help spelling it?
 - Mary
 - Never
 - Ever
 - Missed
 - One
 - Night
 - In
 - Class

How do you get an elephant in the refrigerator?
6 Points to Remembers When Creating Mnemonics

- Use positive, pleasant images
- Exaggerate the size
- Use humor
- Use similarly rude or sexual rhymes
- Use vivid, colorful images
- Use all five senses

The mnemonic should clearly relate to the thing being remembered

Open the refrigerator door, insert elephant, close door.
Mnemonic Successes

- ONOMATOPOEIA
Systematic procedures for enhancing memory

- Developing better ways to take in (encode) information
- Finding a way to relate new information to information students already have locked in long-term memory

If we can make a firm enough connection, the memory will last a very long time.
Other General Techniques for Improving Memory

- Increase attention
- Enhance meaningfulness
- Use pictures
- Minimize interference
- Promote active manipulation
- Promote active learning
- Increase the amount of practice
Tips for Using Mnemonics

- Model when to use
- Model what each letter in the mnemonic stands for
- Model how to apply it to prior knowledge
- Provide students with cues
- Use rapid-fire-verbal-rehearsal
METRIC PREFIXES

- King Herrod died Monday drinking chocolate milk

Kilo (1000)
Hecto (100)
Deca (10)
Metric (1)
Deci (1/10)
Centi (1/100)
Milli (1/1000)

Any others out there?
Real Number Properties

- **Communicate**
 - “Commutative Property”
 - \(A + (\text{talks to}) \ B = B + (\text{talks to}) \ A \)

- **Association**
 - “Associative Property”
 - to be truly effective a good business may need to *regroup* every now and then
 - \(A + (B + C) = (A + B) + C \)

- **Paperboy**
 - “Distributive Property”
 - The paperboy throws a paper to each house on the street
 - \(A \ (B + C) = A \cdot B + A \cdot C \)
Best friends ‘til the end

$$2X - 5 = 11$$

$$+ 5 \quad + 5$$

$$2X = 16$$
Calculate slope using the slope formula

- Format: \[\frac{y_2 - y_1}{x_2 - x_1} \]

- Substitute ordered pairs: (SING) x on the bottom, y on the top.

\[\frac{1 - (-2)}{2 - (-4)} \]

\[\frac{1 + 2}{2 + 4} \]

\[\frac{3}{6} \]
Special Lines and Slope

Undefined for the Up/Down Line

Horizontal (H) Zero slope (O) HO
Finding the Equation of Diagonal Line

- From the slope formula, we get the point–slope form of the equation of a line
- Why not modify it?
- Modified “point–slope”

 \[y = m(x - x_1) + y_1 \]

 - All it takes to find the equation of a line is the slope and a point
- So to find the equation of a diagonal line, we sing

 \[y = (x - _____) \]

- Look at the connection to the standard form of a parabola \(y = a(x - h)^2 + k \)

if it’s a polynomial with zeros use:
\[f(x).y = (x - (x - (x - (x - _________) _______) \]

Graphing Lines in Slope Intercept

- \(y = mx + b \)

- \(b \) (the \(y \)-intercept)
 - Is the \(b \)-ginning point then
 - From there

- \(m \) sideways is a 3, for 3 components:
 - Direction up/down?
 - Rise
 - Run (right)

The lion, decided to have a party. He invited all the animals in the jungle, and they all came except one. Which one?
Graphing Lines in Double Intercept—The “Mitten” Method

\[4x + 3y = 12 \]

\[(0, ___) \ (__, 0) \]

◦ Make your elephant ears
◦ Then use your mittens
 • Cover the x and solve
 • Cover the y and solve

The giraffe, because he’s still in the Refrigerator.
Systems of Equations

<table>
<thead>
<tr>
<th>Types of systems</th>
<th>Algebra view</th>
<th>Graph view</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inconsistent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
So what is FOIL in picture form?
- It’s a “garden girl” leg – leg – big butt, baby butt

\[(2x - 4)(6x + 3)\]

Great for multiplying complex numbers and binomial with radicals
Solving quadratics

- Solve using factoring and apply the zero product property
 \[= 0 \]
 \[F \]
 \[S \]

- Solve using the quadratic formula
 \[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

The door won’t close.
Complete the Square–Beer Song

Procedure \(ax^2 + bx + c = 0: \)

1. Divide by \(a \) and format \(x^2 + bx + __ = c + __\)
2. Bring down \(x \), bring down the sign, bring down \(b/2 \), \((___)^2\)
3. Square \(b/2 \) and put in both blanks
4. Simplify the right side
5. Radicalize–radicalize–± and then solve

Ex. \(x^2 - 6x + 3 = 0 \) (notice \(a = 1 \) and \(b \) is an even number)

\[
x^2 - 6x + _9__ = -3 + _9__
\]

\[
(x - 3)^2 = 6
\]

\[
\sqrt{(x - 3)^2} = \pm \sqrt{6} \quad \Rightarrow \quad x = 3 \pm \sqrt{6}
\]
FACTORIZING

Summary of the Factoring Process

GCF out first: What do each of the terms share
Remember if the lead term is negative, factor out a negative

Binomials

- $a^2 - b^2$
- $SING$
- $(+)(-)$

Trinomials

- $ax^2 + bx + c$
- USE THE "F-WORD"
- read in reverse:
 1: factors of c that give a sum (difference) of B
 2: SIGNS: same same
 3: difference-different-sign
 4: goes to the larger
 5: break up x^2
- Id coeff other than 1
- outer and inner combos

4 or more term

REGROUP
- hint: look for a number pattern or hidden trinomial
FACTORING BINOMIALS

- $\text{sq}^2 - \text{sq}^2$
 - SING
 - $(+)(-)$

- $\text{cube}^3 + \text{cube}^3$
 - cube roots, SOPPS
FACTORIZING TRINOMIALS

Trinomials

1. Coeff of 1: \(x^2 + bx + c \)
 USE THE "F-WORD"

 read in reverse:
 1: factors of c that give a sum (difference) of B
 2: SIGNS: sum-same; difference-different-sign
 goes to the larger
 3: break up \(x \)

2. Coeff other than 1
 \(ax^2 + bx + c \)
 outer and inner combos
FACTORING POLYNOMIALS WITH MORE THAN 3 TERMS

4 or more term

REGROUP
hint: look for a number pattern or hidden trinomial
Simplifying radicals

- Good boys and bad boys that don’t take their hats off in church

\[
\sqrt{180} x^5
\]

\[
\sqrt{4 \times 9 \times 5} x \times x^4 = \sqrt{4 \times 9} x^4 \times \sqrt{5x} = 2 \times 3 \times x^2 \times \sqrt{5x}
\]
Solving radical equation

Square–square–check

\((\sqrt{x - 7})^2 = (5)^2\)

Solving equations with \((x + a)^2\)

- Radicalize–radicalize–plus and minus
Others

- SOH CAH TOA—a wise math teacher once said that when your foot gets smooshed one should “soak a toa”

- Please Excuse My Dear Aunt Sally

- Adding Integers—Water balloon fight
Connect with your students

- Tutor in the learning center—Blue slips for extra credit
- Student tracking system
In Conclusion

- Mnemonic strategies are simple but powerful.
- Mnemonics can be used to help students recall information.
- Mnemonics can assist students to remember and apply intellectual processes.
- Effective instruction for thinking will include a variety of mnemonic strategies, a variety limited only by the teacher's imagination.
- What mnemonic devices can you invent to promote thinking for your students with special needs?
How much did you learn?
Sources

- MARGO A. MASTROPIERI AND THOMAS E. SCRUGGS, Enhancing School Success with Mnemonic Strategies, Intervention in School and Clinic 33 no4 201–8 Mr 98
- David W. Test and Michael F. Ellis, The Effects of LAP Fractions on Addition and Subtraction of Fractions with Students with Mild Disabilities, EDUCATION AND TREATMENT OF CHILDREN Vol. 28, No, 1, FEBRUARY 2005
- Resham Singh, Mnemonics & Memory Aids, Mathematics in School 36 no5 28–9 N 2007
- Emmanuel Manalo, Julie K. Bunnell, and Jennifer A. Stillman, THE USE OF PROCESS MNEMONICS IN TEACHING STUDENTS WITH MATHEMATICS LEARNING DISABILITIES, Learning Disability Quarterly 23 no2 137–56 Spr 2000
- THOMAS LOMBARDI and GRETCHELEN BUTERA, Mnemonics: Strengthening Thinking Skills of Students with Special Needs, The Clearing House 71 no5 284–6 My/Je 98
MELODY SHIPLEY

North Central Missouri College
mshipley@mail.ncmissouri.edu