Facebook Twiter Goole Plus Linked In YouTube Blogger

Seeds


Seed is an embryonic plant enclosed in a protective outer covering. The formation of the seed is part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiosperm plants. A mature fertilized plant ovule consisting of an embryo and its food source and having a protective coat or testa. Place (seeds) in or on the ground for future growth. Most Fruits have Seeds and Most Vegetables don't have Seeds. Go to Seed

Previous SubjectNext Subject

Seeds Seed Library is an institution that lends or shares seed. It is distinguished from a seedbank in that the main purpose is not to store or hold germplasm or seeds against possible destruction, but to disseminate them to the public which preserves the shared plant varieties through propagation and further sharing of seed. Seed libraries usually maintain their collections through donations from members. but may also operate as pure charity operations intent on serving gardeners and farmers. A common attribute of many seed libraries is to preserve agricultural biodiversity by focusing on rare, local, and heirloom seed varieties. Seed libraries use varied methods for sharing seeds, primarily by: seed swaps otherwise known as seed exchanges, in which library members or the public meet and exchange seeds. Seed "lending," in which people check out seed from the library's collection, grow them, save the seed, and return seed from the propagated plants to the library.

Seed Libraries
Seed Libraries Weebly
Seed Library Map
Seed Library
Seed Libraries
Seed Savers
Save Seed Sharing Petition
Sustainable Economies Law Center
American Seed Trade Association

Global Seed Vault is a secure seed bank on the Norwegian island of Spitsbergen near Longyearbyen in the remote Arctic Svalbard archipelago, about 1,300 kilometres (810 mi) from the North Pole. Conservationist Cary Fowler, in association with the Consultative Group on International Agricultural Research (CGIAR), started the vault to preserve a wide variety of plant seeds that are duplicate samples, or "spare" copies, of seeds held in gene banks worldwide. The seed vault is an attempt to insure against the loss of seeds in other genebanks during large-scale regional or global crises. The seed vault is managed under terms spelled out in a tripartite agreement between the Norwegian government, the Crop Trust and the Nordic Genetic Resource Center (NordGen). The Norwegian government entirely funded the vault's approximately 45 million kr (US$9 million) construction. Storing seeds in the vault is free to end users, with Norway and the Crop Trust paying for operational costs. Primary funding for the Trust comes from organisations such as the Bill & Melinda Gates Foundation and from various governments worldwide. Knowledge Preservation

Crop Trust formerly known as the Global Crop Diversity Trust, is an international nonprofit organization which works to preserve crop diversity in order to protect global food security. It was established through a partnership between the United Nations Food and Agriculture Organization and the Consultative Group on International Agricultural Research acting through Bioversity International, which is a global research-for-development organization with a vision – that agricultural biodiversity nourishes people and sustains the planet. Crop Trust Website

Advance Sowing consists in dry-sowing crops directly into existing pastures without using tillage, fertilizer or chemicals.

Priming is a form of seed planting preparation in which the seeds are pre-soaked before planting.

Germination
Micro-Greens
Plant Breeding

Heirloom Plant is an old cultivar that is maintained by gardeners and farmers, particularly in isolated or ethnic minority communities in western countries. These may have been commonly grown during earlier periods in human history, but are not used in modern large-scale agriculture.

Seed Drill is a device that sows the seeds for crops by metering out the individual seeds, positioning them in the soil, and covering them to a certain average depth. The seed drill sows the seeds at equal distances and proper depth, ensuring that the seeds get covered with soil and are saved from being eaten by birds. Before the introduction of the seed drill, a common practice was to plant seeds by hand. Besides being wasteful, planting was usually imprecise and led to a poor distribution of seeds, leading to low productivity. The use of a seed drill can improve the ratio of crop yield (seeds harvested per seed planted) by as much as nine times. Some machines for metering out seeds for planting are called planters. The concepts involved (such as mechanisms that pick up seeds from a bin and deposit them down a tube) are largely the same. Seed drills of earlier centuries included single-tube seed drills in Sumer and multi-tube seed drills in China, and later a seed drill by Jethro Tull that was influential in the growth of farming technology in recent centuries. Even for a century after Tull, hand sowing of grain remained common.

Hydroseeding is a planting process that uses a slurry of seed and mulch. It is often used as an erosion control technique on construction sites, as an alternative to the traditional process of broadcasting or sowing dry seed. (also known as hydraulic mulch seeding, hydro-mulching, hydraseeding).

Broadcast Seeding is a method of seeding that involves scattering seed, by hand or mechanically, over a relatively large area. This is in contrast to: precision seeding, where seed is placed at a precise spacing and depth; hydroseeding, where a slurry of seed, mulch and water is sprayed over prepared ground in a uniform layer.

Planting Seeding Methods



How to Harvest - Lettuce Seed (video)

Maize and Wheat Improvement Center

Nixtamalization refers to a process for the preparation of maize , or other grain, in which the grain is soaked and cooked in an alkaline solution, usually limewater, and hulled. The term can also refer to the removal via an alkali process of the pericarp from other grains such as sorghum. Nixtamalized maize has several benefits over unprocessed grain: it is more easily ground; its nutritional value is increased; flavor and aroma are improved; and mycotoxins are reduced. Lime and ash are highly alkaline: the alkalinity helps the dissolution of hemicellulose, the major glue-like component of the maize cell walls, and loosens the hulls from the kernels and softens the maize. Some of the corn oil is broken down into emulsifying agents (monoglycerides and diglycerides), while bonding of the maize proteins to each other is also facilitated. The divalent calcium in lime acts as a cross-linking agent for protein and polysaccharide acidic side chains. As a result, while cornmeal made from untreated ground maize is unable by itself to form a dough on addition of water, the chemical changes in masa allow dough formation. These benefits make nixtamalization a crucial preliminary step for further processing of maize into food products, and the process is employed using both traditional and industrial methods, in the production of tortillas and tortilla chips (but not corn chips), tamales, hominy, and many other items.

These Seeds are Sacred and He's Saving Them (youtube)

4 Sisters - Corn, Bean, Squash, Sunflower

Cherokee Nation to disperse rare, traditional seeds

Domesticated rice has just been found in China, and it's about 9,000 years old

Eating Seeds

Survival Tips and Information

Sowing is the process of planting seeds. An area or object that has had seeds planted will be described as being sowed.

Harvest is the process of gathering a ripe crop from the fields.

"You're going to Reap what you Sow"

The more good things that you add to life, the more good things you will receive from life.

And... in the end... the love you take... is equal to... the love you make (youtube)

You will always harvest what you plant. Cause and Effect


How Plants Form Their Seeds. Around 80 to 85 percent of our calorie needs is covered through seeds either directly as food or indirectly through use as feed. Seeds are the result of plant reproduction. During the flowering period, the male and female tissues interact with each other in a number of ways. When pollen lands on the flower’s stigma, it germinates and forms a pollen tube, which then quickly grows towards the plant’s ovary. Once it finds an ovule, the pollen tube bursts to release sperm cells, which fertilize the ovule and initiate seed formation.


Sapling - Seedlings


Seedling or Sapling is a Young Plant sporophyte developing out of a Plant embryo from a seed. Seedling development starts with germination of the seed. A typical young seedling consists of three main parts: the radicle (embryonic root), the hypocotyl (embryonic shoot), and the cotyledons (seed leaves). The two classes of flowering plants (angiosperms) are distinguished by their numbers of seed leaves: monocotyledons (monocots) have one blade-shaped cotyledon, whereas dicotyledons (dicots) possess two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons. The plumule is the part of a seed embryo that develops into the shoot bearing the first true leaves of a plant. In most seeds, for example the sunflower, the plumule is a small conical structure without any leaf structure. Growth of the plumule does not occur until the cotyledons have grown above ground. This is epigeal germination. However, in seeds such as the broad bean, a leaf structure is visible on the plumule in the seed. These seeds develop by the plumule growing up through the soil with the cotyledons remaining below the surface. This is known as hypogeal Germination.

Seed Germinating Timeline

Farming Knowledge

Vertical Farming - LED Grow Lights

Herbs and Spices






Norfolk Island Pine


An Indoor Air Purifier and a Living Christmas Tree for years to come. “Let the Love Grow”

"Taking care of a plant is kind of like taking care of a person, it needs healthy food, clean water, good sunlight, good hygiene and lots of love..and talking to it doesn’t hurt either."

Instructions for taking care of a Norfolk Island Pine: Take off the holiday foil wrapper and remove the clear cover for the pot.

Lighting: Plant thrives in Medium to Bright Light. The less light this tropical plant gets, the slower it will grow. Turn the plant a ¼ turn weekly or bi-weekly to keep it symmetrical. Mark the pot in 4 places to remember. Avoid any sudden changes in room temperature, temperature extremes and chilly drafts.

Water once a week, enough to keep the soil moist, but not wet. The roots will rot if they stand in water. Excess water should drain out the bottom of the pot, so place a dish saucer underneath. Let the soil dry slightly before watering again. If the soil pulls away from the pot's edge as it dries, gently press it back. If your house air is dry and has low humidity then spray water mist over your plant ounce a week. Use a pebble tray or a small humidifier if needed. Brown needles are sometimes normal but may also indicate not enough water or too much water if yellow. Needles should be dark green. During the inactive winter months you don’t need to water or fertilize as much. It may need staking to help keep it upright.

Fertilize once a month except in the winter months. (Diluted water soluble fertilizer 6-4-6).

Repot your plant every 2 years or more with same type of soil using a two inch bigger pot that’s deep with good drainage. A mix of equal parts sterilized fast-draining potting soil, peat and sand provides a suitable medium for root support and growth. NIP’s do well in both acidic and alkaline pH soils. This tree has a Fragile root system so be careful. If the branches are drooping then it needs water.

Prune your tree at any time of the year. Remove any branches/stems that have died. But remember pruned branches will not grow back, so be careful. Also remove any scale insects that you see. Scale Insect are parasites of plants, feeding on sap drawn directly from the plant's vascular system. There are about 8,000 described species of scale insects. Many scale species are serious crop pests.

Uses: Timber from this pine is good for making things like tool handles, chair and table legs, spindles and pegs for furniture, musical instruments, urns, sculptures, bowls, platters, and chair seats. Grain is usually straight, with a fine to medium uniform texture. Moderate natural luster. Heartwood is light brown, sometimes with a yellow or red hue.
Resin has medicinal uses as a natural antiseptic and disinfectant. It also may be antimicrobial and antifungal properties and may be cytotoxic and antiulcerogenic. Pine resin makes a great fire starter and a waterproofing agent too. Stem exudates yielded three labdane diterpenes, labda-8(17),14-diene, 13-epicupressic acid, and 13-O- acetyl-13-epicupressic acid.

Warnings: Norfolk Island pine is not intended for human or animal consumption. Pine needles are not to be eaten or made into tea because this plant is not technically a true pine in the Pinus genus plant species.

Scientific name of this plant is Araucaria Heterophylla. Other names include Star Pine, Triangle Tree and House Pine to name a few. This Prehistoric Tropical Plant is Native to the South Pacific. It cannot survive in frost or snow. 40 to 50 degrees Fahrenheit is fine for the winter. This plant is low-maintenance and is relatively slow-growing, but it can grow to 6 feet tall or more and live for around 150 years.

“Plant the seeds of love in your heart, and let your love grow like a tree, with its branches and roots spreading out in all directions, as a service to the cycle of life and a gift for future generations to come.” ...A tree says I care about you and every little thing that makes you possible.”

****

There are 2 seasons: wet season (summer) and dry season (winter). Usually the dry season is longer. During the dry seasons plant life and animal life suffers, but as the rainy season begins life flourishes in this area. This climate is caused by changing wind and ocean currents.

A transplanted tree form one climate zone to another will be fine once it recovers from "transplant shock". How long this takes depends on the size of the tree and how much of the root system got damaged when it got dug up and transplanted, but typically it's 1 to 5 years.

Plants use "circadian rhythm" to regulate different cycles (flowering, fruiting, leaf drop) which is, in effect, the up regulation and down regulation of different proteins from the genome in response to different enzymes. This is due (mostly) to one molecule: phytochrome which changes its isomeric conformation in response to exposure to light and then slowly changes back over time in the dark. Edit: I should make it clear that it is not the mere presence of the other isomer that has physiological effects, but the different rate of periodic cycle as the night gets shorter and longer. This actually brings up an interesting fact, because the isomeric change happens in response to light it is the length of the night which is most important and if you have a bunch of plants that you're growing in a greenhouse or any kind of enclosed system ag house, you have to be careful not to flash your plants at night with light because you cause all the phytochrome to change conformation and in effect have caused a whole day to happen. The different "photoperiods" affect the enzymatic activity within the cells and after a chain of intermediate proteins upregulates different genes. Of course this is all bubkis because if you planted the tree outside it would die simply from cold damage (as any leafed tree in the winter would). That said, the plants would probably be fine if you kept them inside. They would drop their leaves if the days were short (if the plant naturally does so; many tropical plants do not undergo leaf abscission) or keep them if the days were long. It probably wouldn't fruit the first year due to lack of stored sugars. Of course, you'd want to make sure that you weren't transporting any pathogens in/on the plant or in the potting mix.

Hardiness Zone - Trees - Tropics

North Atlantic Oscillation and synchronized tree reproduction across Europe plays a greater role in large scale masting, the process whereby forest trees produce large numbers of seeds in the same year. North Atlantic Oscillation



The Thinker Man