
Introduction

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the
net and into the court so that the ball lands at just the right spot. This comes from years of practice. Players
might be surprised to know just what they are doing in terms of the actual ball trajectories. For example

suppose you hit a forehand at the baseline so that the ball lands on your opponent's baseline 78 feet away. If
you hit the same ball but 1% faster it will land 18 inches beyond the baseline. If you hit the ball one degree
higher it will land about 6 feet beyond the baseline, depending on the initial speed and angle. If you hit the ball
one degree further to the left it will land 16 inches further to the left.

When serving a ball at moderate to high speed, the ball must be served a few degrees down from the horizon-
tal. Too far down and the ball will hit the net. Not enough and the ball will be long. The range of possible angles
is only about two degrees, and it gets smaller if the ball is served faster or by a shorter player (Brody, 1987).
The range of angles increases if the ball is served with topspin. Typical ball trajectories are shown below, togeth-
er with an explanation of the trajectories.
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Examples of Ball Trajectories

(a) Dropping a Ball (Free Fall)

Suppose that a ball is dropped from a height of 1.0 m (about
waist height) and is allowed to fall to the ground. Provided
that it is not hit or thrown then it starts out with zero speed.
It will accelerate downwards due to the force of gravity. If we
ignore air resistance, then the vertical distance (y) travelled in

time t is given by y = gt2/2 where g = 9.8 m/s2 is the acceler-
ation due to gravity. After = 0.1 s, y = 0.049 m and after 0.2 s,
y = 0.196 m. The ball will hit the ground at t = 0.452 s. On
the way down, the speed increases and is given by v = gt. At
t = 0, v = 0. At t = 0.1, v = 0.98 m/s. Just before it hits the
ground, at t = 0.452 s, v = 4.43 m/s. The corresponding results
for a ball dropped from a height of 100 inches (2.54 m) is
shown in Figure 42.1. Air resistance is very small in this case
since the ball speed is small. If allowance is made for air
resistance, a ball dropped from a height of 100 in would hit
the ground at 0.725 s instead of 0.720 s. 

(b) Horizontal hit with free fall

Now suppose that the ball is hit at 30 m/s (67 mph) from a
height of 1.0 m so that it starts moving in a horizontal direc-
tion, parallel to the ground, as shown in Figure 42.2. It is easy
to calculate where the ball will land provided we ignore the
force on the ball due to air resistance. Then the only force act-
ing on the ball is the gravitational force pulling the ball verti-
cally towards the ground. The ball will accelerate downwards
and change its vertical speed, but there is no change in the
horizontal speed since there is no force in the horizontal
direction. In other words, the ball will keep moving horizon-
tally at 30 m/s until it hits the ground. It starts out with zero

speed in the vertical direction, and moves down-

wards a vertical distance y = gt2/2, as in our first
example. It therefore takes 0.452 s to hit the
ground. During that time, it travels a horizontal
distance x = 30 x 0.452 = 13.56 m. 

In this case air resistance does make a difference
since the ball is moving fairly fast and since the
air resistance increases as the ball speed increas-
es (Table 42.1). 

If the ball has no spin then it will actually hit the
court after 0.470 s after traveling a horizontal dis-
tance of 12.46 m. The average horizontal speed is
12.46/0.47 = 26.5 m/s. The horizontal speed
drops slightly as the ball moves through the air,
and so does the final vertical speed since air
resistance exerts a force backwards and upwards
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along the path of the ball. If the ball
has topspin, there is an additional
force that acts at right angles to the
path of the ball, in a downwards and
backwards direction in this case. This
force is called the Magnus force. For
example, if the ball is spinning at 20
revolutions/sec, the ball will hit the
court after 0.410 s after traveling a
horizontal distance of 10.85 m. 

The distance from the baseline to the net is 39 feet (11.887 m) and the height
of the net in the middle is exactly 3 feet (0.9144 m). A ball hit horizontally at
30 m/s will not clear the net even if it starts at a point 1.0 m off the ground.
To get the ball over the net it has to be hit upwards at a certain angle to the
horizontal. It can't be hit too steeply or it will land past the baseline at the other
end of the court. There is a certain range of angles that will get the ball over
the net and inside the baseline. The range of angles is relatively small. 

(c) Hitting at Various Launch Angles

Figure 42.3 shows the trajectories of
a ball hit from a height of 1.0 m, at
30 m/s and at various angles to the
horizontal, including the effects of air
resistance. In order to just clear the
net, a ball hit without spin must be

hit upwards at 4.0o to the horizontal.
If the ball has topspin at 20 revolu-
tions/sec, it must be hit upwards at

5.5o to the horizontal. If a ball is hit
without spin at 8.1o to the horizontal,
it lands on the far baseline. If the ball
has topspin at 20 revolutions/sec, it

must be hit upwards at 11.9o to land
on the baseline. The range of avail-

able angles is 4.1o without spin or

6.4o with topspin.

Drag Force

(a) Drag force pushes ball backwards and slows it down.

A ball traveling through the air experiences a backwards force due to the fact
that the air pressure on the front of the ball is larger than the force at the back
of the ball. This force is called the drag force. The force is large because air is
heavy. Not as heavy as water, but a room full of air contains about 90 kg or
200 lb of air. When a tennis ball is at rest, air pressure exerts a force of 150 lb
on the front of the ball and 150 lb on the back of the ball. The ball doesn't col-
lapse since the air inside the ball exerts a similar force outwards. When a ball
is traveling through the air, the force on the rear side of the ball is typically
about 0.2 lb lower than the force on the front side, depending on the ball
speed. 

Ball Trajectories 369

0.0

0.5

1.0

1.5

2.0

2.5

0 5 1 0 1 5 2 0 2 5 3 0

y (m)

x (m)

net

no spin

20 rev/s

baseline
at 23.77 m30 m/s

Table 42.1. Trajectories With Same Launch Speed and 
Angle Under Various Conditions 

Conditions Velocity Time to Bounce Travel Distance
No air no spin 30 m/s 0.452 secs 13.56 m
Air no spin 30 m/s 0.470 secs 12.46 m
Air w/ topspin (20rev/s) 30 m/s 0.410 10.85

Figure 42.3



(b) Formula for drag force.

The flow of air around a tennis ball is turbulent at all ball speeds of interest in
tennis, due to the relatively rough surface of the ball. This actually simplifies
the analysis of ball motion since the drag coefficient remains constant for all
speeds of interest. Other balls used in sport are generally smoother, but this
complicates the analysis since the drag coefficient usually decreases suddenly
at a sufficiently high ball speed (an effect known as the drag crisis). The drag
force is proportional to the ball speed squared and is given by the formula

F = Cd A d v2/2 (42.1)

where d = 1.21 kg/m3 is the density of air, A = π R2 is the cross-sectional area
of the ball, R is the radius of the ball, v is the ball speed and Cd is the drag

coefficient. The only factor here that can be influenced by the player is the ball
velocity. If the ball was a flat, circular disk, the drag coefficient would be 1.0.
But a ball has a rounded nose which streamlines the air flow and reduces the
drag. For a relatively new tennis ball, Cd is about 0.55. A used ball experiences

a slightly lower drag force since it has a smoother surface. A standard new ball
of radius 3.3 cm therefore experiences a backwards force 

F = 0.55 x 0.00342 x 1.21 x v2/2 = 0.00114 x v2 Newton (N).

For example, if v = 10 m/s then F = 0.114 N. If v = 20 m/s then F = 0.456 N.
If v = 30 m/s then F = 1.026 N. We can compare this with the force of gravity

F = mg acting downwards on the ball. Since g = 9.8 m/s2 and m = 0.057 kg for
a standard tennis ball, mg = 0.057 x 9.8 = 0.559 N. The drag force is as large
as the gravitational force even at moderate ball speeds. At a very fast serve
speed of 60 m/s, the drag force is 7.3 times bigger than the gravitational force.
As a result, a ball served at high speed slows down rapidly through the air and
lands on the court at about 75% of the serve speed. In fact, a ball served at any
speed lands on the court at about 75% of the serve speed. A ball served at a
low speed experiences a small drag force, but it spends a relatively long time
slowing down. 

Magnus Force

(a) Force due to spin

An additional force arises if the ball is spinning. A spinning ball sets the air
around it in motion in a thin layer near the surface of the ball. The flow of air
around the ball is altered in such a way that the air pressure on top of a spin-
ning ball is decreased if the ball has topspin and is increased if the ball has
backspin. As a result, a ball that travels horizontally experiences a force down-
wards if it has topspin or upwards if it has backspin. If the ball spins about a
vertical axis then the force causes the ball to swerve sideways. The force due
to spin is called called the Magnus force and it always acts at right angles to
the drag force and to the spin axis. (see Figure 42.4). Consequently, if a ball
with topspin is rising upwards at an angle to the court, the Magnus force tends
to push the ball down onto the court and it pushes it forwards in a direction
parallel to the surface. If a ball with topspin is falling towards the court sur-
face, the Magnus force pushes the ball downwards and backwards. A ball with
topspin therefore falls onto the court at a steeper angle than a ball without top-
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spin. Conversely, a ball with backspin
tends to float through the air and falls to
the court at a shallow angle.

(b) Formula for the Magnus force.

The magnitude of the Magnus force on a
tennis ball is given by

F = CL A d v2/2 (42.2)

where CL is called the lift coefficient since

the ball experiences a vertical lift force if
it has backspin and is given by 

CL = 1/[2 + (v/vspin)] (42.3)

where vspin = Rω is the peripheral speed

of the ball, R is its radius and ω is the
angular speed about a horizontal axis per-
pendicular to the path of the ball. The angular speed varies typically from
about 100 to about 500 radians/sec which translates to a spin between 16 and
80 revolutions per second (1 rev/sec = 6.28 radians/sec). Suppose that v = 30
m/s, ω = 300 rad/s and R = 0.033 m. Then vspin = 9.9 m/s, v/vspin= 3.03 and CL

= 0.20. The lift coefficient in this case is smaller than the drag coefficient, but
not a lot smaller. The lift coefficient never gets to be as large as the drag coef-
ficient. At most, CL = 0.5, which is the limit when vspin is much larger than v.

Ball spin also affects the drag coefficient (Stepanek, 1985). A good fit to the
experimental data is given by 

Cd = 0.55 + 1/[22.5 + 4.2(v/vspin)2.5] 0.4

which indicates that Cd increases from 0.55 to

0.84 as vspin increases from zero to a value much

larger than v.

Serve Trajectories

Armed with the relevant values of the lift and
drag coefficients, one can calculate the trajecto-
ry of a tennis ball through the air for any initial
set of conditions. The equations describing the
trajectory are given in the Appendix to this
chapter. Some typical serve trajectories are
shown in Figure 42.5 for a ball served at 110
mph (177 kph) from a height of 2.8 m (9 feet 2
inches). A person of height h serves the ball
from a height typically about 1.5h. For example,
a person of height 6 feet usually serves the ball
from a point about 9 feet above the court, even
if he or she tosses it a lot higher. A high ball toss
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allows the server enough time to sight the ball and judge its position accu-
rately. A high ball toss also allows the server to maintain good balance while
the tossing arm is lifted upwards and the serving arm is moved backwards. If
the toss is too high, the ball might be thrown too far forwards or backwards.

The trajectories in Figure 42.5 were calculated for a serve down the center line
so that the ball just cleared the net or so that it landed on the service line.
Results are given for a perfectly flat serve with no spin and for a serve with
topspin at 40 rev/sec. One of the advantages of serving with topspin is that the

available range of serve angles is increased (from 1.4o to 2.5o in this case). The
ball also approaches the court at a steeper angle and kicks up at a higher angle.
The results in Figure 42.5 are typical of a first serve. If the serve speed is
reduced to 85 mph and the spin increased to say 50 rev/s for a second serve,

the range of available angles increases to 3.8o. 

A surprising result is that the range of available angles for a serve is almost the
same for a serve in the far corner of the service court. Even though the net is
1.7 inches (43 mm) higher along that path, the distance from the server to the
far corner is 18 inches (457 mm) longer. As a result, the range of available

angles is reduced by only about 0.1o. It is therefore just as easy to serve into
the far corner as to serve down the center line. The hard part is to serve even
wider than the far corner. There is, however, one advantage of serving towards

the far corner. If you aim for the
center line and miss in the hori-
zontal direction, then you have
only a 50-50 chance that the ball
will be in. If you aim towards the
far corner and miss in the horizon-
tal direction then the ball can still
land in, provided you serve the
ball short. 

To compensate for possible hori-
zontal direction errors, you should
never aim exactly down the center
line, but a bit towards the receiver.
Just how far is something that you
need to determine for yourself. Try
serving down the line a few times
and see how far you miss (on
average). That's how far you
should aim away from the line.

Appendix:Trajectory Equations

Suppose that a tennis ball of mass m and radius R is traveling at speed v and
at an angle theta upwards from the horizontal. The velocity in the horizontal
direction is then vx = v cos(θ) and the velocity in the vertical direction is vy =

v sin(θ). The forces acting on the ball are mg downwards, Fd = Cd Adv2/2 back-

wards and FL = CL Adv2/2 upwards and at right angles to the path of the ball
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(assuming the ball has backspin). The equations of motion are then

mdvx/dt = -Fdcos (θ) - FL sin (θ)

mdvy/dt = FLcos(θ) - Fd sin(θ) - mg

which can written as

dvx/dt = -kv (Cd vx + CL vy ) (43.a1)

dvy/dt = kv (CL vx - Cd vy ) - g (43.a2)

where k = d.π.R2/(2m). If the ball has topspin, the sign in front of CL must be

changed in each of these equations. These equations can be solved numeri-
cally, but care is needed to avoid numerical errors. A good check is to solve
for a purely vertical drop without spin. In that case the equation of motion is

dv/dt =  -kCd v2 - g (42.a3)

which can be solved analytically to check the numerical result. For example, if

m = 57 gm, g = 9.8, d = 1.21 kg/m3, diameter = 2R = 65 mm, Cd = 0.50, initial

speed = 15 m/s downwards starting at y = 30 m, then the ball hits the ground
at y = 0 at speed v = 21.006 m/s after 1.6199 sec.

The essential features regarding the horizontal motion of a tennis ball can be
described analytically if one ignores the small vertical component of the ball
speed. Consider a case where a ball is traveling horizontally at speed v with-
out spin, and where the equation of motion in the horizontal direction has the
form

dv/dt = - k Cd v2 (42.a4)

The ball will subsequently develop a velocity component in the vertical direc-
tion due to the gravitational force, but this component is typically much small-
er than the horizontal component and can be neglected as a first approxima-
tion. Since the drag force increases with the velocity squared, one might expect
that the drag force on a ball would have a significantly greater effect at higher
ball speeds. However, the kinetic energy of the ball also increases with the
velocity squared. As a result, the percentage change in ball speed as a result
of the drag force, over a given distance, does not depend on the ball speed.
Equation (42.a4) can be integrated directly to show that

v/vo = 1/(1 + k Cd s) (42.a5)

where vo is the initial speed and s = vot is the distance the ball would travel at

speed vo in a time t. For a standard 66 mm diameter, 57 gm tennis ball, k Cd =

0.020 m-1 when Cd = 0.55. Over the distance s = 17.888 m from a point 40 cm

in front of the baseline to the opposite service court line, the ball speed drops
to v = 0.737vo, regardless of the initial speed. For example, if vo = 160 kph,

then v = 118 kph, which agrees well with the numerical solution (113.6 kph) .
The numerical solution takes into account both the horizontal and vertical
motion of the ball.
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Equation (42.a5) can also be integrated directly to show that the time taken to
travel a horizontal distance x is given by

t = [exp(k Cd x) - 1]/(k Cd vo) (42.a6)

For a 66 mm diameter tennis ball, the time taken to travel from a point 40 cm
in front of the baseline to the opposite service line is therefore t = 21.5/vo. If

vo = 44.44 ms (160 kph), then t = 0.484 s, which also agrees closely with the

numerical solution (t = 0.487 s).
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