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Abstract—Analyzing the structure of social networks is of
interest in a wide range of disciplines, but such activity is limited
by the fact that these data represent sensitive information and
can not be published in their raw form. One of the approaches to
sanitize network data is to randomly add or remove edges from
the graph. Recent studies have quantified the level of anonymity
that is obtained by random perturbation by means of a-posteriori
belief probabilities and, by conducting experiments on small
datasets, arrived at the conclusion that random perturbation can
not achieve meaningful levels of anonymity without deteriorating
the graph features.

We offer a new information-theoretic perspective on this issue.
We make an essential distinction between image and preimage
anonymity and propose a more accurate quantification, based on
entropy, of the anonymity level that is provided by the perturbed
network. We explain why the entropy-based quantification, which
is global, is more adequate than the previously used local
quantification based on a-posteriori belief. We also prove that
the anonymity level quantified by means of entropy is always
greater than or equal to the one based on a-posteriori belief
probabilities. In addition, we introduce and explore the method
of random sparsification, which randomly removes edges, without
adding new ones.

Extensive experimentation on several very large datasets shows
that randomization techniques for identity obfuscation are back
in the game, as they may achieve meaningful levels of anonymity
while still preserving features of the original graph.

I. INTRODUCTION

Social networks are graph structures holding information on
sets of entities and the relations between them. Such informa-
tion is of interest in a wide range of disciplines, including
sociology, psychology, market research, and epidemiology.
Very often social network data cannot be published in their
raw form since they might contain sensitive information. The
immediate first step to respect the privacy of individuals is
to remove identifying attributes like names or social security
numbers from the data. However, such a naı̈ve anonymization
is far from being sufficient. As shown by Backstrom et al. [1],
the mere structure of the released graph may reveal the identity
of the individuals behind some of the vertices. Hence, one
needs to apply a more substantial procedure of sanitization on
the graph before its release.

The methods for identity obfuscation in graphs fall into
three main categories. The methods in the first category
provide k-anonymity in the graph via edge additions or

deletions [2], [3], [4]. In the second category, methods add
noise to the data in the form of random additions, deletions
or switching of edges, in order to prevent adversaries from
identifying their target in the network, or from inferring the
existence of links between vertices [5], [6], [7], [8], [9]. The
methods in the third category do not alter the graph data like
the methods of the two previous categories; instead, they group
together vertices into super-vertices of size at least k, where
k is the required threshold of anonymity, and then publish the
graph data in that coarser resolution [10], [11], [12].

In this paper we focus on the second category: changing
the graph structure via random perturbations. Algorithms in
this category usually utilize one of two graph perturbation
strategies: random addition and deletion of edges, or random
switching of edges. In the first strategy one adds randomly h
non-existing edges after randomly deleting h existing edges;
such techniques preserve the total number of edges in the
graph [6], [7]. In the second strategy, one selects h quadruples
of vertices {u, v, x, y} where (u, v) and (x, y) are edges and
(u, y) and (v, x) are not, and switches between them, so that
the two former edges become non-edges and the two latter
non-edges become edges [7], [8], [9]; such techniques preserve
the degree of all vertices in the graph.

Hay et al. [6] investigated methods of random perturbation
in order to achieve identity obfuscation in graphs. They
concentrated on re-identification of vertices by their degree.
Given a vertex v in the real network, they quantified the level
of anonymity that is provided for v by the perturbed graph
as (maxu{Pr(v|u)})−1, where the maximum is taken over
all vertices u in the released graph and Pr(v|u) stands for
the belief probability that u is in fact the target vertex v.
By performing experimentation on the Enron dataset, using
various values of h (the number of added and removed edges),
they found out that in order to achieve a meaningful level of
anonymity for the vertices in the graph, h has to be tuned
so high that the resulting features of the perturbed graph
no longer reflect those of the original graph. Those methods
were revisited in [13], in which Ying et al. compared this
perturbation method to the method of k-degree anonymity due
to Liu and Terzi [2]. They too used the a-posteriori belief
probabilities to quantify the level of anonymity. Based on
experimentation on two modestly sized datasets (Enron and



Polblogs) they arrived at the conclusion that the deterministic
approach of k-degree anonymity preserves the graph features
better for given levels of anonymity.
Our contributions. We present a new information-theoretic
look on the strategy of random additions and deletions of edges
in graphs. Our main contribution is showing that randomiza-
tion techniques for identity obfuscation are back in the game,
as they may achieve meaningful levels of obfuscation while
still preserving characteristics of the original graph. We prove
our claim by means of a principled theoretical analysis and a
thorough experimental assessment.

In particular, we introduce a fundamental distinction be-
tween two different forms of privacy and the corresponding
two measures of the level of anonymity achieved by the
perturbed network. One measure is called k-obfuscation, or
k-image obfuscation, and it is a measure of privacy against
an adversary who tries to locate in the perturbed graph the
image of a specific individual. The second is called k-preimage
obfuscation; this is a measure of privacy against an adversary
who does not have any particular target individual, but she
tries to examine the released graph and deduce the identity of
any of the vertices in that graph.

Our measures are defined by means of the entropy of the
probability distributions that are induced on the vertices of
the perturbed graph (in the case of k-obfuscation) or those
which are induced on the vertices of the original graph (in the
case of k-preimage obfuscation). This is in contrast to Hay et
al. [6] who based their definition of k-candidate anonymity on
a-posteriori belief probabilities. While the a-posteriori belief
probability is a local measure that examines, for each vertex in
the perturbed graph, the probability that the vertex originated
from the target individual in question, the entropy is a global
measure that examines the entire distribution of those belief
probabilities. We explain and exemplify why the entropy-
based measure is more accurate than the a-posteriori belief
probability, where accuracy means that it distinguishes be-
tween situations that the other measure perceives as equivalent.
Moreover, we prove that the obfuscation level quantified by
means of the entropy is always no less than the one based on a-
posteriori belief probabilities. We derive formulas to compute
those entropies in the case where the background knowledge
of the adversary is the degree of the target individual.

We conduct thorough experimentation on three very large
datasets and measure multitude of features of the perturbed
graph. We compare the distribution of the obfuscation levels as
measured by our entropy-based measure to those measured by
the previous one, and show that one may achieve meaningful
levels of obfuscation while preserving most of the features of
the original graph.

We also introduce the method of random sparsification,
which only removes edges from the graph, without adding new
ones. We compare it to random perturbation in terms of the
trade-off between utility of the perturbed graphs and the levels
of obfuscation that they provide. Somehow surprisingly, spar-
sification maintains better the characteristics of the graph than
perturbation at the same anonymity levels. Indeed, removing

an edge affects the structure of the graph to a smaller degree
than adding an edge. This is partially due to the small-world
phenomenon: adding random long-haul edges brings everyone
closer, while removing an edge does not bring vertices so much
apart as there usually exist alternative paths.

II. PRELIMINARIES

Let G = (V,E) be a simple undirected graph that represents
some social network, i.e., each vertex v in V represents an
individual and an edge (v, v′) in E represents some relation
between v and v′. The goal is to release the graph for the
sake of public scrutiny while preserving the anonymity of the
individuals, in the sense of limiting the ability of an adversary
to re-identify vertices in the released graph.

A. Adversarial assumptions

When studying anonymity methods for preventing identity
disclosure, it is commonly assumed that the adversary knows
some structural property of the vertex representing the target
individual in the real graph. Hence, if the adversary wishes to
locate her target individual, Alice, in the anonymized graph,
the adversary may use her prior knowledge of that structural
property in order to do so. Anonymization methods aim at
modifying the original graph to an anonymized graph in which
the assumed property induces equivalence classes of size at
least k, where k is the required level of anonymity.

Liu and Terzi [2] considered the case where the property
that the adversary uses is the degree d(v) of the vertex v.
Namely, it is assumed that the adversary knows the degree of
Alice, and armed with that knowledge the adversary embarks
on a search for her in the network. The algorithms presented
in [2] use edge additions, and possibly also deletions, in order
to make the graph k-degree anonymous in the sense that every
vertex in the graph has at least k − 1 other vertices with the
same degree. Those algorithms attempt at achieving that type
of anonymity with the minimal number of edge additions and
deletions.

Zhou and Pei [4] assumed a stronger property; they con-
sidered the case where the adversary knows the distance-1
neighborhood of the target vertex, N(vi), namely, the sub-
graph that is induced by vi and its immediate neighbors in G.
Another enhancement of the degree property appeared in [11]
and [14]. They considered a sequence of properties that could
be used by the adversary. H1(v) is the degree of v. Then, if
t = H1(v), and v1, . . . , vt are the neighbors of v, they define
Hi+1(v) = {Hi(v1), . . . ,Hi(vt)} for all i ≥ 1. So, while H1

is just the degree property, H2 is the property that consists of
the degrees of the neighbors, H3 consists of the degrees of
the neighbors of the neighbors, and so forth.

In [3] it is assumed that the adversary knows all of the
graph G, and the location of vi in G; hence, she can always
identify vi in any copy of the graph, unless the graph has
other vertices that are automorphically-equivalent to vi. The
algorithm that they present makes sure that every vertex in
the released graph has at least k − 1 other vertices that are
automorphically-equivalent to it.



As it is very unrealistic to assume that the adversary would
gain information on all neighbors of all neighbors of the
target vertex, properties Hi for all i ≥ 2, and the property
that was assumed in [3] (which is stronger than Hi for all
i ≥ 1) are of more theoretical nature. But even the simpler
properties of the degree, d(v) = H1(v), and the neighborhood,
N(v), are quite strong, since typically an adversary would
be able to gain information on neighbors of Alice and their
interconnection, but it would be hard for him to get hold of the
complete picture. Hence, a more realistic assumption is that
the adversary knows a partial picture regarding N(vi). For
instance, the adversary can be a member of the same hiking
group as Alice’s. If that group has 20 members, all of whom
know each other since they meet every other weekend, the
adversary would know that Alice’s neighborhood contains a
clique of size 20. In such cases the property is that of a sub-
neighborhood. The adversary knows that the neighborhood of
the target vertex, N(vi), contains some graph H . With that
information, she may scan all vertices in the released graph
and look for those that have a neighborhood in which H may
be embedded.

B. Anonymization

Let G = (V,E) be a graph and P be a property of the
vertices in the graph, as exemplified above. That property
induces an equivalence relation ∼ on V , where vi ∼ vj if and
only if P (vi) = P (vj). For example, for the degree property,
vi ∼ vj if d(vi) = d(vj); or, in the case that was studied in
[3], vi ∼ vj if they are automorphically-equivalent. Since P
is assumed to hold all of the information that the adversary
has regarding the target vertex, she cannot distinguish between
two vertices in the same P -equivalence class. This motivates
the following definition.

Definition 2.1: A graph G is called k-anonymous with
respect to property P if all equivalence classes in the quotient
set V/ ∼ of the property P are of size at least k.

Given an integer k, one may transform the input graph G
into a k-anonymous graph GA = (VA, EA) by adding or re-
moving edges and vertices from G. For example, in the model
of k-degree anonymity [2], the anonymization algorithm adds
edges to the graph (or, in another version of the algorithm, adds
and removes edges) until each degree in GA = (VA = V,EA)
appears at least k times. In k-neighborhood anonymity [4],
edges are added until each neighborhood in GA appears at
least k times. In k-symmetry anonymity [3], new edges and
vertices are added until every vertex in GA has at least k− 1
other vertices that are indistinguishable from it based on the
graph structure, since they are all automorphically-equivalent.

By releasing a graph that was subjected to such a k-type
anonymity procedure, the adversary will not be able to track
Alice down to subsets of vertices of cardinality less than k.
Moreover, as all vertices in that set are equivalent in the eyes
of the adversary (since they all share the same property which
is the only weapon that the adversary has), they are all equally
probable as being Alice. Hence, if we model the knowledge

of the adversary regarding the location of Alice in VA as a
random distribution on VA, where each vertex v in VA has
an associated probability of being Alice, given the a-priori
knowledge of the adversary and the observed GA, then k-
type anonymity models dictate that the entropy of that random
distribution is at least log2 k.

We proceed to propose a probabilistic version of that type
of k-anonymity.

III. OBFUSCATION BY RANDOMIZATION

In this paper we study identity obfuscation methods based
on either random perturbation or random sparsification.

A. Obfuscation by random sparsification

Obfuscation by random sparsification is performed in the
following manner. The data owner selects a probability p ∈
[0, 1] in a way that will be discussed later on. Then, for each
edge e in E the data owner performs an independent Bernoulli
trial, Be ∼ B(1, p). He will leave the edge in the graph in case
of success (i.e., Be = 1) and remove it otherwise (Be = 0).

Letting Ep = {e ∈ E | Be = 1} be the subset of edges that
passed this selection process, the data owner will release the
subgraph Gp = (U = V,Ep). The idea is that such a graph
offers some level of identity obfuscation for the individuals in
the underlying population, while maintaining sufficient utility
in the sense that many features of the original graph may be
inferred from looking at Gp.

The set of vertices in Gp will be denoted by U , even though
it equals the set of vertices in G, which is denoted V . The
introduction of a different notation will be needed in our
analysis later on, in order to distinguish between the set of
vertices, as observed by the adversary in Gp, and the set of
vertices in the original graph, G.

B. Obfuscation by random perturbation

Obfuscation by random perturbation is a process that con-
sists of two phases – edge deletions followed by edge addi-
tions. One way of performing this process is as follows: In
the first phase the data owner selects an integer h and then
he randomly picks a subset of h edges out of the m edges
in E and removes them. In the second phase the data owner
randomly picks h pairs of vertices that were not connected in
E, and adds edges that connect them.

We consider here random perturbations that use a very
similar process using a sequence of Bernoulli trials. In the
first phase the data owner selects a probability p ∈ [0, 1] and
then, for each edge e in E, he retains it in probability p. In
the second phase the data owner selects another probability q
and then adds an edge e in (V ×V )\E with probability q. In
order to guarantee that the expected number of edges in the
resulting graph equals m = |E|, the probability q should be
selected so that

pm+ q ·
((

n

2

)
−m

)
= m,



or equivalently,

q = q(p) =
m((

n
2

)
−m

) · (1− p). (1)

As we shall always set q to be a function of p through
Equation (1), we shall denote the resulting randomized graph,
as before, by Gp = (U = V,Ep).

IV. k-OBFUSCATION AND k-PREIMAGE OBFUSCATION

Here, we define our two privacy notions. The first one pro-
tects against adversaries who try to locate a specific individual
in the randomized graph. The second one protects against
a different type of adversarial attack which is not targeted
against a specific individual. (A similar distinction was made
in [15] between (1, k)-anonymity and (k, 1)-anonymity in the
context of anonymizing databases by means of generalization.)

A. k-Obfuscation

We assume hereinafter that the adversary knows the ran-
domization method and the value of the selected randomization
parameter p. The goal of the adversary is to locate the image
in U of a specific vertex v in V . Due to randomization, the
adversary cannot determine which of the vertices u in U is the
image of v in V ; however, based on her background knowledge
and the observed Gp the adversary may associate a probability
with every vertex u in U as being the sought-after image of
v in V . Let us denote the corresponding random variable that
is defined by v and Gp on U by Xv; namely, for every u in
U , Xv(u) is the probability that u is the image of v in Gp.

Definition 4.1 (k-Obfuscation): A perturbed graph Gp re-
spects k-obfuscation if for every vertex v in V , the entropy of
the random variable Xv over U is at least log k.

We used the term obfuscation, rather than anonymity, be-
cause traditionally anonymity is associated with cases in which
every item (vertex or record) in the released data (graph or
table) belongs to an equivalence class of items of size at
least k. Randomization does not produce such outputs, hence
the different term.

Hay et al. [11] defined a different notion: k-candidate
anonymity. Reformulated in our terms, a randomized graph
offers k-candidate anonymity if

Xv(u) ≤ 1

k
, for all v in V and u in U. (2)

The logic behind that definition, as implied by the term
k-candidate anonymity, is that condition (2) guarantees that
for each vertex v ∈ V there are at least k candidate nodes
u ∈ U that might be its image. Hence, k-candidate anonymity
attempts at guaranteeing a lower bound on the amount of
uncertainty that the adversary would have when she tries to
locate the image of the target individual in the perturbed
graph. However, we claim that this definition does not measure
correctly the amount of uncertainty that the adversary has
regarding the correct identification of the target individual. For
example, such a definition does not distinguish between the
following two situations:

(1) Xv(u1) = Xv(u2) = 1
2 , and

Xv(ui) = 0 for all 3 ≤ i ≤ n;
(2) Xv(u1) = 1

2 ,
Xv(ui) = 1

2t for all 2 ≤ i ≤ t+ 1, and
Xv(ui) = 0 for all t+ 2 ≤ i ≤ n.

Both cases respect 2-candidate anonymity since the maxi-
mal probability in both is 1

2 . However, it is clear that in the
first case, where there are only two suspects, the amount of
uncertainty (and the efforts that are needed to complete the
identification) is much smaller than in the second case, where
there are t+ 1 suspects.

The correct way to measure uncertainty is the entropy.
Indeed, the entropy distinguishes between the above two cases:
By applying Definition 4.1 to those two cases, we find that the
first one respects 2-obfuscation, while the second one respects
(2
√
t)-obfuscation.

It is worth noting that `-diversity [16] is a measure of
exactly the same thing — the amount of uncertainty of the
adversary regarding some property of the target individual.
There too, the selected measure is the entropy and not the
maximal probability. In other studies that used `-diversity, the
interpretation of `-diversity was taken as the maximal prob-
ability instead of the entropy, e.g. [17], [18], [19]. However,
the maximal probability was taken instead of the entropy just
because it is easier to enforce and not because it was perceived
as a better measure for the diversity.

Proposition 4.2: The obfuscation level of a given perturbed
graph Gp is always no less than the corresponding candidate
anonymity level.

Proof: Fix v ∈ V and let p(v) = (p1, . . . , pn) denote
the probability distribution Xv; i.e., if the vertices in the
perturbed graph are U = {u1, . . . , un} then pi = Xv(ui).
The obfuscation level offered by Gp is then

ko = min
v∈V

2H(p(v))

while the candidate anonymity level is

kc = min
v∈V

(
max

pi∈p(v)
pi

)−1
.

For any fixed v ∈ V we have

H(p(v)) =
∑
i

pi log

(
1

pi

)
≥
∑
i

pi log

(
1

max pi

)

= log

(
1

maxpi∈p(v) pi

)
.

Therefore,

2H(p(v)) ≥
(

max
pi∈p(v)

pi

)−1
∀v ∈ V.

The last inequality implies that ko ≥ kc.
In experiments that were conducted in [11] on the Enron

dataset, it was shown that in order to achieve a reasonable k-
candidate anonymity it is necessary to use values of the pertur-
bation probability p for which most of the graph features (e.g.,



diameter, path length, closeness, betweenness) are severely
altered. They concluded that randomness cannot achieve at the
same time a reasonable privacy preservation and an acceptable
loss of utility. Our claim here is that, in light of the observation
that k-obfuscation is the correct measure, and that such a
measure is satisfied by larger values of k than k-candidate
anonymity, random perturbation is back in the game of privacy
preservation in social networks.

B. k-preimage obfuscation

The definition of k-obfuscation and k-candidate anonymity
reflect the goal to protect against an adversary who wishes
to reveal sensitive information on a specific target individual.
Those definitions aim to limit the possibility of the adversary
to identify the image of the target individual in the released
network. Such adversarial attacks are the ones that are more
commonly discussed and analyzed, e.g. [1], [20].

However, there is another type of adversarial attacks that
one should consider: When the adversary is interested in re-
identifying any entity in the released data, for instance to find
possible victims to blackmail. Such an attack works in the
opposite direction: Focusing on an item in the released (and
presumably anonymized) corpus of data, the adversary tries to
infer its correct preimage.

This kind of attack is also at the basis of the well-known
August 2006 AOL crisis. On August 4, 2006, AOL Research
released a compressed text file containing twenty million
search keywords for more than 650,000 users over a 3-
month period, intended for research purposes. Even though all
records were stripped of the identity of the person that made
the query, certain keywords contained personally identifiable
information. Since each user was identified on that list by a
unique sequential key, it was possible to compile a search
history for each given user. The New York Times [21] was
able to locate an individual from the released and anonymized
search records by cross referencing them with phonebook
listings.

These considerations motivate the following definition.
Definition 4.3 (k-Preimage Obfuscation): Let G = (V,E)

and Gp = (U,Ep) be an original and perturbed graphs,
respectively. For each u ∈ U let Xu denote the corresponding
random variable that is defined on V , i.e., Xu(v) is the
probability that v is the preimage of u in G. Then the perturbed
graph Gp respects k-preimage obfuscation if for every vertex
u ∈ U , the entropy of the random variable Xu on V is at
least log k.

Similarly, we may define k-preimage candidate anonymity
by enforcing Xu(v) ≤ 1

k for all v ∈ V and u ∈ U .

V. QUANTIFYING THE LEVEL OF OBFUSCATION

The definitions in the previous section involved two ensem-
bles of probability distributions: {Xv(·) : v ∈ V }, defined on
U , for k-obfuscation, and {Xu(·) : u ∈ U}, defined on V , for
k-preimage obfuscation. The randomized graph Gp respects
k-obfuscation (resp. k-preimage obfuscation) if the entropy of
each of the probability distributions in the first (resp. second)

ensemble is greater than or equal to log k. Here we describe
how to compute those distributions. We separate the discussion
to the two notions of obfuscation.

A. Verifying k-obfuscation

Let P (·) denote the property that the adversary knows about
the target vertex v ∈ V . By looking at the released graph Gp

and the values of P (ui) for each of the vertices ui ∈ U in
Gp, the adversary may associate a probability Xv(u) for the
event that the vertex u ∈ U is the image of v.

Let v and u be vertices in V and U respectively. Let
f(v;u) be the probability that a vertex with property P (v)
was converted, under the known randomization model, to a
vertex with property P (u). For example, in the case of the
degree property, P (·) = d(·), f(v;u) is the probability that a
vertex with degree d(v) was converted to a vertex with degree
d(u), given the method and parameters of randomization. For
the sake of illustration, if the method of randomization was
sparsification, then f(v;u) = 0 whenever d(v) < d(u), since
by only deleting edges it is impossible that the degree of a
vertex would increase.

As discussed earlier, the property P induces an equiva-
lence relation, denoted ∼, on both V and U . Therefore, we
may compute the probabilities f(v;u) only on the Cartesian
product of the two equivalence classes, (V/ ∼) × (U/ ∼).
Those computed values would give the values of f(v;u) for
all v ∈ V and u ∈ U . We arrange those values in an n × n
matrix F where Fi,j = f(vi, uj), 1 ≤ i, j ≤ n. Each row
in this matrix corresponds to an original vertex v ∈ V and
gives the related probabilities f(v, u) for all u ∈ U . Similarly,
each column corresponds to an image vertex u ∈ U . The
matrix F enables us to compute the probability distributions
Xv(·), for all v ∈ V , by looking at its rows. The probability
distributions are obtained by normalizing the corresponding
row in the matrix F :

Xvi(uj) =
Fi,j∑

1≤j≤n Fi,j
, 1 ≤ i, j ≤ n. (3)

For example, if in the randomization process we use p = 1,
then Gp = G. In that case, f(v;u) = 1 if P (v) = P (u) and
f(v;u) = 0 otherwise. Therefore, for any given v ∈ V , the
entries in the corresponding row in F would be 1 in columns
that correspond to vertices u ∈ U with P (u) = P (v), and
0 otherwise, since by using p = 1 (no randomization), the
properties of the vertices remain unchanged. For each v ∈ V ,
the set of probabilities {f(v;u) : u ∈ U} is then converted
into a probability distribution by means of normalization. If
there are ` vertices u ∈ U for which f(v;u) = 1, then each
one of them is the image of v with probability 1/`. In that
case, Xv(·) associates the probability 1/` for each of those `
vertices in U , and zero to the remaining n− ` vertices.

To illustrate that, assume that G and Gp have 7 vertices and
p = 1 (so that Gp = G). Assume that the degree sequence in
the graph is (2, 2, 2, 3, 4, 4, 5). Then Table I below gives the
matrix F is this case; the first column indicates the vertices in
G and their degrees, while the first row indicates the vertices



in Gp and their degree. Take, for instance, the row of v1. It
has four 0s and three 1s. Then by dividing the entries of that
row by 3, we infer that each of the vertices u1, u2, u3 is the
image of v1 with probability 1/3, while u4, u5, u6, u7 cannot
be the image of v1.

TABLE I u1:2 u2:2 u3:2 u4:3 u5:4 u6:4 u7:5
v1:2 1 1 1 0 0 0 0
v2:2 1 1 1 0 0 0 0
v3:2 1 1 1 0 0 0 0
v4:3 0 0 0 1 0 0 0
v5:4 0 0 0 0 1 1 0
v6:4 0 0 0 0 1 1 0
v7:5 0 0 0 0 0 0 1

The computation of the probability distributions Xv(·) that
was carried out in [6] was different, but the basic idea is
similar. In that study, the randomization was made by first
removing h of the existing edges, thus arriving at an interim
graph, and then adding h of the edges that do not exist in the
interim graph, thus arriving at Gp. Given a graph Gp, the set
of possible worldsWh(Gp) is the collection of all graphs over
the same set of vertices that could have been the pre-image of
Gp under that randomization model. Each of the graphs G in
Wh(Gp) was associated with a probability, Pr(G). Then, they
defined f(v;u) as the sum of Pr(G) for all possible worlds
G ∈ Wh(Gp) in which the property of the candidate vertex
u equals the known property of the target vertex v. Finally,
they normalized f(v;u) in the same way that we did in order
to get a probability distribution Xv(·) on U . In particular,
the probability distribution that was associated in [6] to every
possible world was uniform. However, this should be corrected
since some possible graphs may be converted to the observed
randomized graph Gp in more than one way. Specifically, if
the intersection of the edge set in the possible graph G with
the edge set in Gp is of size m−h+j, where 0 ≤ j ≤ h, then
the number of different ways in which G could be converted
to Gp is

(
m−h+j

j

)
. As a result, the probability of the possible

world G is

Pr(G) =

(
m− h+ j

j

)/[(m
h

)((n
2

)
−m+ h

h

)]
.

B. Verifying k-preimage obfuscation

Assume that the adversary knows the value of the property
P (·) for all vertices v ∈ V . Then by looking at the released
graph Gp and fixing u ∈ U , he may associate, for every v ∈ V ,
a probability Xu(v) for the event that v is the preimage of u.
Namely, every u ∈ U induces a probability distribution on V .

Let u and v be vertices in U and V respectively. Let f ′(v;u)
be the probability that a vertex with property P (u) originated
from a vertex with property P (v). As discussed earlier, we
may compute f ′(v;u) on the Cartesian product of the two
equivalence classes, (V/ ∼) × (U/ ∼), and then construct
an n × n matrix F ′ where F ′i,j = f ′(vi, uj), 1 ≤ i, j ≤ n.
That matrix enables us to compute the probability distributions
Xu(·), for all u ∈ U , by looking at its columns. The probabil-
ity distributions are obtained by normalizing the corresponding

column in the matrix F ′:

Xuj
(vi) =

F ′i,j∑
1≤i≤n F

′
i,j

, 1 ≤ i, j ≤ n. (4)

Considering the example that was given above in Section
V-A, if we normalize the column of u5 in Table I we infer
that u5 originated from v5 or v6 with probability 1/2 each,
and could not have originated from any of the other vertices.

We proceed to derive explicit formulas for the case where
the property is the degree. The goal is to arrive at a condition
that p has to satisfy so that Gp will be k-obfuscated. In Section
VII we discuss stronger properties.

VI. k-DEGREE OBFUSCATION

Here we consider the case of the degree property P (·) =
d(·) and derive explicit formulas for f(·; ·) and f ′(·; ·). From
those values one may compute the levels of k-degree obfus-
cation and k-degree preimage obfuscation as described in the
previous section. Hereinafter, if v ∈ V and u ∈ U , and u is
the image of v, we denote this relation by v 7→ u.

Let v ∈ V be a target vertex in V and assume that the
adversary knows that its degree is d(v) = a. Let u ∈ U be a
candidate vertex in U whose degree is d(u) = b. Then f(v;u)
equals the following conditional probability,

f(v;u) = Pr(d(u) = b | d(v) = a, v 7→ u); (5)

namely, given that v has a degree a and its image in Gp is u,
f(v;u) is the probability that u’s degree is b. (In order to avoid
cumbersome notations we shall drop the notation v 7→ u from
the conditional probabilities henceforth; it is assumed always
that v and u are a preimage and image pair.)

Under the random sparsification approach, b ∼ B(a, p),
where B(a, p) is the Binomial distribution over a experiments
and success probability p. Under the random perturbation
approach, b ∼ B(a, p) + B(n − 1 − a, q(p)). Hence, in the
first model of random sparsification,

Pr(d(u) = b | d(v) = a) =

{ (
a
b

)
pb(1− p)a−b b ≤ a

0 b > a
.

(6)
As for the second model of random perturbation, let us denote
by t the number of real edges adjacent to v that survived the
randomization. Hence, b− t is the number of phantom edges
that were added by the random perturbation. Clearly, t ≤ a
and t ≤ b. Therefore, the conditional probability is given by

Pr(d(u) = b | d(v) = a) =

min{a,b}∑
t=0

(
a

t

)
pt(1− p)a−t ×

×
(
n− 1− a
b− t

)
qb−t(1− q)n−1−a−b+t. (7)

Let
F (v) =

∑
u∈U

f(v;u), (8)



where f(v;u) is given by Equations (5)+(6) or (5)+(7), and
for every u ∈ U , b is its degree. Then

Xv(u) =
f(v;u)

F (v)
, u ∈ U.

Hence, the level of obfuscation which is provided by using p
is ko = minv∈V 2H(Xv), while the candidate anonymity level
is kc = minv∈V (maxXv)

−1.
Next, we turn to compute f ′(v;u), which is the inverse

conditional probability. Assume that d(v) = a and d(u) = b.
Then

f ′(v;u) = Pr(d(v) = a | d(u) = b); (9)

namely, given that v is the preimage of u and that the degree
of u in Gp is b, f ′(v;u) is the probability that the degree of
v is a. By Bayes Theorem,

Pr(d(v) = a|d(u) = b) =

=
Pr(d(v) = a)

Pr(d(u) = b)
· Pr(d(u) = b|d(v) = a). (10)

The value of Pr(d(v) = a) may be obtained from the frequen-
cies of the degrees in G. The probabilities Pr(d(u) = b) are
computed as follows:

Pr(d(u) = b) =
∑
a

Pr(d(u) = b|d(v) = a) · Pr(d(v) = a).

(11)
Hence, the value of f ′(v;u) is given by Equations (9)–(11),
together with Equations (6) or (7) which give the conditional
probability Pr(d(u) = b|d(v) = a) in the two randomization
models.

To summarize, we derived here the values of f(v;u) and
f ′(v;u) in the case of P (·) = d(·). Those values enable
to compute the probability distributions Xv(·) on U , for all
v ∈ V , and Xu(·) on V , for all u ∈ U . The data owner
needs to select a randomization parameter p such that the
entropy of Xv is greater than or equal to log k for all v ∈ V
(in order to satisfy k-obfuscation), or a similar condition for
the Xu, u ∈ U , probability distributions on V for the sake
of k-preimage obfuscation. The goal is to select the largest
p for which the required level of obfuscation is met, in
order to retain as much as possible of the properties of the
original graph. The maximal value of p that still respects k-
obfuscation (or k-preimage obfuscation) may be approximated
by numerical means.

VII. k-NEIGHBORHOOD OBFUSCATION

Here we discuss briefly the case in which the traceability
property is the neighborhood, P (·) = N(·). In order to
compute the probability distributions Xv(·), v ∈ V , on U , in
this case, we need to compute, for every pair of neighborhoods
α and β, the conditional probability Pr(N(u) = β | N(v) =
α, v 7→ u). This is the probability that a vertex v ∈ V that
has a neighborhood α is converted under the randomization
model to a vertex u ∈ U with a neighborhood β. In the case
of randomization by sparsification, it is necessary to find all
possible embeddings of β in α, since there could be many

ways in which α could be transformed into β, to compute
the probability of each such transformation and add them
up. Such a computation seems intricate even for moderately
sized α and β. The situation becomes more intricate in the
case of random perturbation. Here, any neighborhood α could
be converted to any neighborhood β since any edge can be
potentially removed and any non-edge (in the entire graph)
can be potentially added.

Hence, it seems hard to measure precisely the level of
obfuscation that is achieved when the property is not a
simple one like the degree. The same difficulty also prevents
the adversary from associating probabilities to the different
vertices in the released graph as the possible images of the
target vertex. Moreover, as opposed to the degree property, in
order to perform such computations in the perturbation model,
the adversary would need to know the structure of the entire
graph, since even two far-apart vertices may become neighbors
in that randomization model.

VIII. EXPERIMENTS

In this section we report our experimental assessment of
the effects of random sparsification and perturbation on the
structure of the perturbed graph, as well as of the level of
anonymity achieved, according to both k-obfuscation and k-
preimage obfuscation notions. In all of the experiments we as-
sume an adversary that uses the degree as the re-identification
property, and that knows the randomization method and the
value of the randomization parameter p.

A. Datasets

We use three large real-world datasets – dblp, flickr,
and Y360. The main characteristics of the datasets are pro-
vided in Table II, where n is the number of vertices, m is the
number of edges, d is the average degree, ∆ is the maximum
degree, and α is the coefficient of fitting a power law in the
degree distribution.

dblp. We extract a co-authorship graph from a recent snap-
shot of the DBLP database that considers only the journal
publications. There is an undirected edge between two authors
if they have coauthored a journal paper.

flickr. Flickr is a popular online community for sharing
photos, with millions of users. In addition to many photo-
sharing facilities, users are creating a social network by
explicitly marking other users as their contacts. In our dataset,
vertices represent users and edges represent the contact rela-
tionship.

TABLE II
DATASET CHARACTERISTICS

Dataset n m d ∆ α
dblp 226 413 716 460 6.32 238 2.8
flickr 588 166 5 801 442 19.72 6 660 1.9
Y360 1 226 311 2 618 645 4.27 258 2.3



Fig. 1. Effect of randomization on the dblp and Y360 datasets.

Y360. Yahoo! 360 was a social networking and personal
communication portal. Our dataset models the friendship rela-
tionship among users. Among the three datasets, Y360 is the
sparsest one.

B. Graph statistics

The first objective of our experimental evaluation is to show
that the method of randomized anonymization leaves to a large
extent the structure of the original graph intact. Our strategy
is to measure certain graph statistics on the original graph,
on the anonymized graphs, and on random graphs. We then
expect that for the anonymized graphs, the statistics under
consideration are closer to those statistics on the original graph
than to those on the random graph. The statistics that we
measure are the clustering coefficient, (i.e., the fraction of
closed triplets of vertices among all connected triplets), the

average distance among pairs of vertices, the diameter (i.e.,
the maximum distance among pairs of vertices), the effective
diameter (the 90th percentile distance, i.e., the minimal value
for which 90% of the pairwise distances in the graph are no
larger than), and the epidemic threshold (defined later).

We also report experiments based on graph clustering. We
run the METIS graph-clustering algorithm [22] with a prefixed
number of clusters k on the original graph and on the perturbed
one and we report their Rand Index, which is a measure of
clustering similarity.1

In Figure 1 we report all of the above statistics, for different
values of p on the dblp and Y360 datasets. We compare
the graph obtained by sparsification and perturbation with a
random Erdõs-Rényi graph containing the same number of
edges and averaged over 50 random runs, and with the original

1http://en.wikipedia.org/wiki/Rand index



graph. For the perturbation approach, the value of q is defined
as a function of p according to Equation (1) in Section III.
In all plots we report six values per curve, corresponding to
p = 2i/100 for i = 0, . . . , 5.

We next describe the results following the order of plots in
Figure 1 from left to right and from top to bottom.

Clustering coefficient. The first two plots of Figure 1 show
that in both datasets, sparsification and perturbation do not lose
much in terms of clustering coefficient for small values of p.
When p grows to 0.16 the loss starts to be more substantial.
In both datasets, sparsification preserves better the clustering
coefficient.

Average distance, diameter and effective diameter. The
next six plots of Figure 1 show that sparsification obviously
increases distances among pairs of vertices. Perturbation, on
the other hand, drastically reduces the diameter of the network,
since the addition of random long-haul edges brings every-
one closer. Overall, sparsification preserves better the graph
distances than perturbation does, with the exception of the
diameter in Y360. However, it should be noted that in the
effective diameter (which is a smoother and more robust to
noise measure) sparsification performs very well especially
for reasonably low values of p.

Epidemic threshold. An interesting way to characterize com-
plex networks is by studying their epidemic properties. The
idea here is to assume that a virus propagates along the edges
of the graph, according to some virus-propagation model, and
infects vertices in the graphs. It turns out that for many virus-
propagation models of interest, the graph can be characterized
by a quantity called epidemic threshold, and the epidemic
exhibits a threshold phenomena: if a certain parameter of the
virus propagation model exceeds the epidemic threshold, then
the virus will spread to all the vertices of the graph, otherwise
it will die out. In certain virus-propagation models [23], it can
be shown that the epidemic threshold is λ−11 , where λ1 is the
largest eigenvalue of the adjacency matrix of the graph. This
is the definition of epidemic threshold that we use here.

The values of epidemic threshold for dblp and Y360
datasets are reported in the first half of the third row of
Figure 1. The results are very intuitive: real graphs have very
low epidemic thresholds; essentially epidemic outbreaks are
likely because of the existence of hubs. On the other hand,
random graphs have high tolerance to epidemic outbreaks.
Perturbation and sparsification both produce graphs that have
epidemic thresholds which are very close to that of the original
graph.

Clustering similarity. Maybe the most interesting experiment
is to asses to which extent the results of a data mining analysis
are sensitive to the perturbation process. In the last two rows of
Figure 1 we report the similarity measure between a clustering
obtained on the original graph and a clustering of the perturbed
one. We can observe that both perturbation and sparsification
perform well for small values of p, being always above 0.8

Fig. 2. Anonymization level of k-obfuscation (left) and k-preimage obfus-
cation (right) on the dblp dataset.

similarity, but as p grows, perturbation has a larger effect on
clustering similarity than sparsification.

C. Anonymization level

So far we have discussed the extent to which the structure
of the graph is preserved for some given values of p. The
next question is the level of anonymity which is achieved for
the same values of p. Figures 2 and 3 report this information
for dblp and Y360 datasets respectively. The two columns in
the plots refer to the two adversarial models that we discussed.
The left column reports the achieved levels of k-obfuscation
and k-candidate anonymity, while the right column reports
the achieved levels of k-preimage obfuscation and k-preimage
candidate anonymity. Specifically, for a given value of p, we
have on the x-axis the anonymity level and on the y-axis the
number of vertices that do not reach such anonymity level. The
plots report those values for the original graph, and for the
sparsified and perturbed graphs. The curves that correspond
to obfuscation levels are marked by (entrp) (since they are
based on the entropy) while those that correspond to candidate
anonymity are marked by (prob) (since they are based on the
probability values).

We can draw three observations from these plots:

(1) Both perturbation and sparsification provide good pri-
vacy protection already at very low values of p.



Fig. 3. Anonymization level of k-obfuscation (left) and k-preimage obfus-
cation (right) on the Y360 dataset.

(2) As proved in Proposition 4.2, the obfuscation level mea-
sured by entropy is always larger than the obfuscation
level measured by probability.

(3) Although, in general, given a graph G and a randomiza-
tion Gp, the corresponding level of image obfuscation is
usually different from the corresponding level of preim-
age obfuscation, it turns out that in practice the plots for
k-obfuscation and k-preimage obfuscation levels tend to
be very similar.

Comparison with Liu-Terzi [2]. We next present a compari-
son with the method for k-degree anonymity by Liu and Terzi
[2] (LT hereinafter). This set of experiments is conducted on
the flickr dataset and the results are reported in Figures
4 and 5. In all of the experiments we assume an anonymity
parameter k = 20 for the LT method.

We recall that the objective of the LT method is to find the
minimum number of edge additions and deletions so that the
resulting graph is k-degree anonymous. To understand better
the behavior of the LT method, we consider a typical real-
world graph whose degree distribution follows a power law.
We observe that for such a typical power law graph, almost all
vertices satisfy already the k-degree anonymity requirement,
with the possible exception of a small number of hubs. Thus,
the LT algorithm has only to “adjust” the degrees of those hubs
(possibly by adding or deleting edges among them) while leave

the majority of the other vertices unaffected. Therefore, LT is
able to achieve k-degree anonymity with a very small number
of edge additions and deletions. Even though the resulting
graph satisfies the k-degree anonymization requirement, one
may argue that leaving the majority of the vertices unaffected
has serious privacy implications. For example, the resulting
graph is still vulnerable to the attack of Backstrom et al. [1].

In contrast, the randomized algorithm affects all vertices in
the graph and thus it offers stronger anonymization properties.
In a sense, the randomized anonymization destroys not only
degree structure, but also higher neighborhood structures.
Unfortunately, as we pointed out previously, quantifying the
anonymization level for higher neighborhood structures seems
a computationally infeasible problem (for the data owner as
well as for the adversary).

Our intuition is made clearer by studying the plots in
Figure 4. We observe that all vertices in the output graph of the
LT method satisfy k-degree anonymity with k = 20; however,
when taking higher values of k, the curve of anonymity
levels in the LT-anonymized graph quickly converges to the
curve of anonymity levels in the original graph. On the other
hand, the randomization methods provide significantly better
levels of anonymization for all vertices in the graph, with the
exception of the very small minority of vertices whose original
anonymization level is smaller than 20.

Fig. 4. Anonymization level of k-obfuscation (left) and k-preimage obfus-
cation (right) on the flickr dataset.



Fig. 5. Effect of randomization on the flickr dataset.

Nevertheless, as both LT and our randomization methods
adopt the k-degree adversarial assumption, it is interesting to
compare to which extent they maintain the graph structure. In
Figure 5 we can observe that for reasonably small values of
p, sparsification always maintains the structure of the graph
better than LT with k = 20. For instance, for p = 0.04 (third
point in the plots) sparsification maintains very well the graph
properties, while providing enough obfuscation as reported in
the second row of Figure 4.

In summary, randomization methods and the LT method
have different objectives, and they operate on different ends of
the anonymization spectrum, thus comparing the two methods
in a fair way seems very tricky. It would be interesting to com-
bine the two techniques; i.e., to apply first the randomization
method in order to obfuscate all detectable structures in the
entire graph (and not only the degrees), and then apply the LT
method only for the hubs, in order to provide also for them a
minimal level of degree-anonymity.

IX. CONCLUSIONS AND FUTURE WORK

Randomization techniques are very appealing as privacy
protection mechanisms for various reasons. They are not
geared towards protecting the graph against any particular ad-
versarial attack. They are very simple and easy to implement.

Unfortunately, recent studies have concluded that random
perturbation can not achieve meaningful levels of anonymity

without deteriorating the graph features. Those studies quan-
tified the level of anonymity that is obtained by random
perturbation by means of a-posteriori belief probabilities.

In this paper we offer a novel information-theoretic perspec-
tive on this issue, concluding that randomization techniques
for identity obfuscation are back in the game, as they may
achieve meaningful levels of obfuscation while still preserving
characteristics of the original graph. We prove our claim by
means of a principled theoretical analysis and a thorough
experimental assessment.

We introduce an essential distinction between two different
kinds of identity obfuscation, corresponding to an adversary
wishing to re-identify a particular individual, or any individual.
We propose to quantify the anonymity level that is provided by
the perturbed network by means of entropy, and we explain
why the entropy-based quantification is more adequate than
the previously used quantification based on a-posteriori belief.
Moreover, we prove that the obfuscation level quantified by
means of the entropy is always no less than the one based on a-
posteriori belief probabilities. We derive formulas to compute
those entropies in the case where the background knowledge
of the adversary is the degree of the target individual. We
also introduce the method of random sparsification, which only
removes edges from the graph.

We conduct thorough experimentation on three very large
datasets and measure multitude of features of the perturbed
graph, showing that randomization techniques achieve mean-
ingful levels of obfuscation while preserving most of the
features of the original graph. We also show that sparsification
outperforms perturbation, as it maintains better the character-
istics of the graph at the same anonymity levels.

In some settings, the network data is split between several
data holders, or players. For example, the data in a network
of email accounts, where two vertices are connected if they
exchanged a minimal number of email messages, might be
split between several email service providers. As another ex-
ample, consider a transaction network where an edge denotes a
financial transaction between two individuals; such a network
would be split between several banks. In such settings, each
player controls some of the vertices (clients) and he knows
only the edges that are adjacent to the vertices under his
control. It is needed to devise distributed protocols that would
allow the players to arrive at a sanitized version of the unified
network, without revealing to them sensitive information on
clients of other players.

The recent survey by X. Wu et al. of privacy-preservation
of graphs and social networks, [24, Chapter 14], concludes
by recommendations for future research in this emerging
area. One of the proposed directions is distributed privacy-
preserving social network analysis, which “has not been well
reported in literature”. The randomization method is a natural
candidate method to be used in achieving anonymization in
a distributed setting. It is far more suited to the distributed
setting than the methods of the first and third categories that
were discussed in the introduction since they hardly require a



global view of the entire graph. In the full version of this paper
we devise secure multi-party protocols for implementing our
randomization algorithms in the distributed setting.

As pointed out in other papers (e.g., [25], [26]) the avail-
ability of additional information (e.g., interest groups) together
with the published graph might create room for attacks based
on link prediction [27]. An interesting open question is quan-
tify the extent in which link-prediction techniques may be used
as a basis for graph reconstruction attacks, especially against
a sparsified graph.

Another interesting direction for future research is to im-
prove the graph statistics that we obtain from the anonymized
graphs. The idea is that since the anonymization is obtained
with a known randomization parameter p, one may attempt to
apply a correction and obtain better estimates for the clustering
coefficient, distances, epidemic thresholds, and other statistics
of interest.
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