
The Intelligent Database Interface:
Integrating AI and Database Systems

Donald P. McKay and Timothy W. Finin and Anthony O’Hare*
Unisys Center for Advanced Information Technology

Paoli, Pennsylvania
mckay@prc.unisys.com and finin@prc.unisys.com

Abstract
The Intelligent Database Interface (IDI) is a cache-based
interface that is designed to provide Artificial Intelligence
systems with efficient access to one or more databases on one
or more remote database management systems (DBMSs).
It can be used to interface with a wide variety of different
DBMSs with little or no modification since SQL is used to
communicate with remote DBMSs and the implementation
of the ID1 provides a high degree of portability. The query
language of the ID1 is a restricted subset of function-free
Horn clauses which is translated into SQL. Results from the
ID1 are returned one tuple at a time and the ID1 manages
a cache of result relations to improve efficiency. The ID1 is
one of the key components of the Intelligent System Server
(ISS) knowledge representation and reasoning system and is
also being used to provide database services for the Unisys
spoken language systems program.

Introduction
The Intelligent Database Interface (IDI) is a portable,
cache-based interface designed to provide artificial intel-
ligence systems in general and expert systems in par-
ticular with efficient access to one or more databases
on one or more remote database management systems
(DBMS) which support SQL [Chamberlm, et. al.,
19761. The query language of the ID1 is the Intelligent
Database Interface Language (IDIL) [O’Hare, 19891 and
is based on a restricted subset of function-free Horn
clauses where the head of a clause represents the tar-
get list (i.e., the form of the result relation) and the
body is a conjunction of literals which denote database
relations or operations on the relations and/or their at-
tributes (e.g., negation, aggregation, and arithmetic op-
erations).

The ID1 is one of the key components of the In-
telligent System Server (ES) [Finin, et. al., 19891
which is based on Protem [Fritzson and Finin, 19881
and provides a combined logic-based and frame-based
knowledge representation system and supports forward-
chaining, backward-chaining, and truth maintenance.
The ID1 was designed to be compatible with the logic-
based knowledge representation scheme of the ISS and

*current address: IBM, Research Triangle Park, North
Carolina

its tuple-at-a-time inference mechanisms. The ID1 has
also been used to implement a query server supporting
a database used for an Air Trorvel Information System
which is accessed by a spoken language system imple-
mented in Prolog [Dahl, et. al., 19901.

In addition to providing efficient access to remote
DBMSs, the ID1 offers several other distinct advan-
tages. It can be used to interface with a wide vari-
ety of different DBMSs with little or no modification
since SQL is used to communicate with the remote
DBMS. Also, several connections to the same or differ-
ent DBMSs can exist simultaneously and can be kept
active across any number of queries because connec-
tions to remote DBMSs are abstract objects that are
managed as resources by the IDI. Finally, accessing
schema information is handled automatically by the
IDI, i.e., the application is not required to maintain
up-to-date schema information for the IDI. This signif-
icantly reduces the potential for errors introduced by
stale schema information or by hand entered data.

The ID1 can be viewed as a stand-alone DBMS inter-
face which accepts queries in the form of IDIL clauses
and returns the result relation as a set of tuples (i.e.,
a list of Lisp atoms and/or strings). IDIL queries are
translated into SQL and sent to the appropriate DBMS
for execution. The results from the DBMS are then
transformed by the ID1 into tuples of Lisp objects. Al-
though the IDI was not designed to be used directly
by a user, the following descriptions will be couched
in terms of using the ID1 as a stand-alone system so
that we may avoid complicating our discussions with
the details of an AI system such as the ISS.

The design of the ID1 was heavily influenced by pre-
vious research in the area of AI/DB integration [Kellog,
et. al., 1986, O’Hare, 1987, O’Hare and Travis, 1989,
O’Hare and Sheth, 19891. One of the more significant
design criteria that this lead to is the support of non-
trivial queries in IDIL. That is, to allow for queries in-
volving more than just a single database relation. This
capability allows the AI system to off-load computa-
tions that are more efficiently processed by the DBMS
instead of the AI system (e.g., join operations). In many
cases, this also has the effect of reducing the size of data
set that is returned by the DBMS.

MCKAY ET AL. 677

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Ertmdhg Re Al system ldxse coupling

Figure 1: Of the four alternative approaches to AI/D5 inte-
gration, the Intelligent Database Interface is an example of
an enhanced AI/DB interface.

While the ID1 is to some small degree system depen-
dent, it does offer a high degree of portability because
it is implemented in Common Lisp, communicates with
remote DBMSs using SQL and standard UNIX pipes,
and represents IDIL queries and their results as Com-
mon Lisp objects.

In the following sections we present a brief overview
of the area of AI/DB integration which represents a
large part of the motivation for the IDI, a discussion
of some of the more significant features of the IDI, the
organization and major components of the IDI, and fi-
nally an example of how the ID1 is being used in two
applications. -

AI/DB Integration
The integration of AI and DBMS technologies promises
to play a significant role in shaping the future of com-
puting. As noted in [Brodie, 19881, AI/DB integration
is crucial not only for next generation computing but
also for the continued development of DBMS technology
and for the effective application of much of AI technol-
ogy*

While both DBMS and AI systems, particularly ex-
pert systems, represent well established technologies,
research and development in the area of AI/DB inte-
gration is comparatively new. The motivations driv-
ing the integration of these two technologies include
the need for (a) access to large amounts of shared
data for knowledge processing, (b) efficient manage-
ment of data as well as knowledge, and (c) intelli-
gent processing of data. In addition to these moti-
vations, the design of ID1 was also motivated by the
desire to preserve the substantial investment repre-
sented by most existing databases. To that end, a
key design criterion for ID1 was that it support the
use of existing DBMSs as independent system compo-
nents. As illustrated in Figure 1 and described below,
several general approaches to AI/DB integration have
been investigated and reported in the literature (e.g.,
[Bocca, 1986, Chakravarthy, et. al., 1982, Chang, 1978,
Chang and Walker, 1984, Jarke, et. al., 1984, Li, 1984,
Minker, 1978, Morris, 1988, Naish and Thorn, 1983,
Reiter, 1978, Van Buer, et. al., 19851).

Extending the AI System: In this approach,

the AI system is extended with DBMS capabilities to
provide efficient access to, and management of, large
amounts of stored data. In general, such systems do
not incorporate full DBMS technology. Rather, the
emphasis is on the AI system and the DBMS capabil-
ities are added in an ad hoc and limited manner, e.g.,
[Ceri, et. al., 19861 implements only the data access
layer. Alternatively, a new generation knowledge-based
system such as LDL [Chimenti, et. al., 19871 may be
constructed. In either ease, this approach effectively
involves “re-inventing” some or all of DBMS technol-
ogy. While such systems typically provide sophisticated
tools and environments for the development of applica-
tions such as expert systems, they can not readily make
use of existing databases. Thus, the development of AI
applications which must access existing databases will
be exceedingly difficult if not impossible (e.g., when the
database is routinely accessed and updated via more
traditional kinds of applications).

Extending the DBMS System: This approach
extends a DBMS to provide knowledge representation
and reasoning capabilities, e.g., POSTGRES [Stone-
breaker, et. al., 19871. Here, the DBMS capabilities are
the central concern and the AI capabilities are added in
an ad hoc manner. The knowledge representation and
reasoning capabilities are generally quite limited and
they lack the sophisticated tools and environments of
most AI systems. Such systems do not directly sup-
port the use of existing DBMSs nor can they directly
support existing AI applications (e.g., expert systems)
without substantial effort on the part of the applica-
tion developer. In some sense, this is the opposite of
the previous approach.

Loose Coupling: The loose coupling approach to
AI/DB integration uses a simple interface between the
two types of systems to provide the AI system with ac-
cess to existing databases, e.g., KEE-connection [Abar-
bane1 and Williams, 19861. While this approach has
the distinct advantage of integrating existing AI sys-
tems and existing DBMSs, the relatively low level of
integration results in poor performance and limited use
of the DBMS by the AI system. In addition, access
to data from the database, as well as the data itself,
is poorly integrated into the representational scheme of
the AI system. The highly divergent methods repre-
senting data (e.g., relational data models vs. frames) is
generally left to the application developer or knowledge
engineer with only minimal support from the AI/DB
interface.

Enhanced AI/DB Interface: The last approach
to AI/DB integration represents a substantial enhance-
ment of the loosely coupled approach and provides a
more powerful and efficient interface between the two
types of systems. As with the previous approach, this
method of AI/DB integration allows immediate advan-
tage to be taken of existing AI and DB technologies
as well as future advances in them. The problems of
performance and under-utilization of the DBMS by the

678 KNOWLEDGEREPRESENTATION

AI system are handled with differing degrees of suc-
cess first by increasing the functionality of the interface
itself, and then if necessary, enhancing either the AI
system or the DBMS. For example, the BERMUDA
system [Ioannidis, et. al., 19881 uses a form of result
caching to improve efficiency and performs some sim-
ple pre-analysis of the AI application to identify join
operations that can be performed by the DBMS rather
than the AI system. The BrAID system [O’Hare and
Sheth, 19891 is similar except that it supports more gen-
eral caching and pre-analysis capabilities and allows for
experimentation with different inference strategies.

The ID1 is an interface that can be used to facili-
tate the development of AI/DB systems using this last
approach. That is, the ID1 is cache-based interface to
DBMSs and is designed to be easily integrated into var-
ious types of AI systems. The design of the ID1 also al-
lows it to be used as an interface between DBMSs and
other types of applications such as database browsers
and general query processors.

Design Features _ ,
The ID1 supports several features which simplify its use
in an AI system. These include

Connections to a DBMS are managed transparently so
that there can be multiple active queries to the same
database using a single open connection.
Connections to a given database are opened upon de-
mand, i.e. at first use instead of requiriig an explicit
database open request.
Database schema information is loaded kom the database
either when the database is opened or when queries re-
quire schema information based upon user declarations.
The query interface is a logic-based language but uses
user supplied functions to declare and recognise logic vari-
ables.
Results of queries to a DBMS are cached, improving
the overall performance system and the cache is accessed
transparently by a query manager.

All but the last of the features are described in this sec-
tion. The cache system and initial performance results
are described in subsequent sections.

Making Connect ions
As suggested above, there are numerous approaches to
interfacing an AI system with existing DBMSs. How-
ever, the basic alternatives involve balancing the costs
of creating the connection to the DBMS and of process-
ing the result relations from a DBMS query. Deciding
which alternative is the best requires knowledge about
the typical behavior of the AI system as well as other,
more obvious factors, such as communication overhead
(cf. [O’Hare and Sheth, 19891). Consider the following
two modes of interaction between an AI system and a
DBMS:

e The AI system generates a few DBMS queries that tend
to yield very large results and the AI system uses only a
fraction of the result.

e The AI system generates many DBMS queries that tend
to yield, on average, small results and the AI system uses
most or all of the result.

In the first case, it would be best to avoid the cost
of processing the entire result by using demand-driven
techniques to produce only one tuple at a time from
the result stream of the DBMS. However, this requires
that separate connections be created for each DBMS
query. Thus the overhead of creating such connections
must be less than the cost of processing the entire result
relation.

In the second case, it would be best to avoid the cost
of creating numerous connections to the DBMS by using
a single connection for multiple queries. However, this
requires that the entire result ofeach query be processed
so that successive queries can be run using the same
connection. The cost of processing DBMS results (i.e.,
reading the entire result stream and storing it locally)
must be less than the cost of creating a new connection
for each DBMS query.

For most systems, it seems reasonable to assume that
the total cost for creating a new DBMS connection will
be relatively high. Thus, using the same connection for
different DBMS queries would result in a net savings.
While specific break-even points could be estimated, it
is not clear one need go that far since there are other
reasons for minimizing the number of DBMS connec-
tions that are open at the same time. Foremost among
these is the limit that most operating systems have on
the number of streams that can be open simultaneously.
This can severely limit the number of DBMS connec-
tions that we can have at one time. If one is also inter-
ested in allowing connections to different databases, on
either the same or a different DBMS, then it is impor-
tant to minimize the number of open connections for a
single database.

Yet another consideration is the use of caching for
DBMS results. That is, if DBMS results can be cached
locally by the AI system or an agent serving it then all
of the DBMS results will probably be processed by the
caching mechanism. Thus, the first alternative (where
it is assumed that the DBMS results will not, in general,
be totally consumed) is no longer applicable.

In light of these constraints and requirements, it
seems best to minimize the number of DBMS connec-
tions that can be open simultaneously. Briefly, the
approach taken in the ID1 is to open a connection
when a DBMS query is encountered against a database
for which no connection exists and process the result
stream one tuple at a time until and unless another
DBMS query on the same database is encountered. At
that point, the new query is sent to the DBMS, the re-
mainder of the result stream for the previous query is
consumed and stored locally, and then the new result
stream is processed one tuple at a time as before.

MCKAY ET AL. 679

Automating Access to Schema Information

One of the key features of the ID1 is the automatic
management of database schema information. The user
or application program is not required to provide any
schema information for those database relations that
are accessed va’u IDIL queries. The ID1 assumes the
responsibility for obtaining the relevant schema infor-
mation from the appropriate DBMS. This provides sev-
eral significant advantages over interfaces which rely on
the user to provide schema information. Most impor-
tantly, the schema information will necessarily be con-
sistent with that stored in the DBMS and thus any
errors introduced by hand-coding the schema informs
tion are eliminated. The only exception to this occurs
when the schema on the DBMS is modifled after the
ID1 has accessed it since the ID1 caches the schema
information and thus maintains a private copy of it.
While this stale data problem exists for any system
which maintains a separate copy of the schema informa-
tion, the ID1 provides a simple mechanism for forcing
the schema information to be updated. In addition,
this approach greatly facilitates the implementation of
database browsers since users need not know the names
or structure of relations stored in a particular database.

Logical Glue

Another significant feature of the ID1 is the relative
ease with which it can be integrated with different AI
systems. Aside from the use of Common Lisp as the
implementation language for the IDI, this is achieved
by employing a logic-based language as the query lan-
guage for the IDI. The language, IDIL, may be used
as a totally independent query language or, more im-
portantly, it may be more closely integrated with the
knowledge representation language of a logic-based AI
system. In the later case, the key is to allow the ID1 to
share the same definition of a logic variable as the host
AI system. This is accomplished be simply redefining a
small set of functions within the ID1 which are used to
recognize and create instances of logic variables.

The IDIL 1 query language is a restricted subset of
function-free Horn clauses where the head of a clause
represents the target list (i.e., the form of the result
relation) and the body is a conjunction of literals which
denote database relations or operations on the relations
and/or their attributes (e.g., negation, aggregation, and
arithmetic operations). Figure 2 shows some example
queries.

ID1 Organization
As Figure 3 illustrates, there are four main components
which comprise the ID1 - the Schema Manager, the
DBMS Connection Manager, the Query Manager, and
the Cache Manager. There are three principal types

’ “IDIL” is pronounced as “idle” and should not be con-
fused with “idyll”.

Get supplier names for suppliers who do not SUpp1y part p%.

((an8 ,Sname)
<-
(supplier -Sno ,Sname -Status -City)
(not (supplier,part ,Sno "p2" ,Qty)))

Get supplier namea and quantity supplied for supplier8 that
supply more than ,900 units of part p.%

((am ,Snme ,Wy)
<-
(supplier -Sno ~Snanw -Status -City)
(supplier-part ,Sno "p2" -t&y)
0 ,qty 300))

Figure 2: Two example lDlL queries using the “suppliers”
database. Symbols beginning with a “/’ character have been
declared to be logic variables.

of inputs or requests to the IDI: (a) a database dec-
laration; (b) an IDIL query and subsequent retrieval
requests against the result of an IDIL query; and (c)
advice to the Cache Manager.. Database declarations
convey simple information about a given database, e.g.,
the type of the DBMS on which the database resides
and the host machine for the DBMS. For each IDIL
query, the ID1 returns a generator which can be used to
retrieve the result relation of an IDIL query one tuple at
a time. The ID1 also supports other types of requests,
e.g., access to schema information, which are described
elsewhere [O’Hare, 19891.

The Schemu Munuger (SM) is responsible for manag-
ing the schema information for all declared databases
and it supplies the Query Manager with schema infor-
mation for individual database relations. This entails
processing database declarations, accessing and storing
schema information for declared databases, and man-
aging relation name aliases which are used when two or
more databases contain relations with identical names.
Whenever a connection to a database is created, the SM
automatically accesses the list of relation names that
are contained within the database. This list is then
cached for later access in the event that the connection
is closed and re-opened at some later time. In this event
the SM will only access the DBMS schema information
if it is explicitly directed to do so, otherwise the cached
list of relation names will be used.

The DBMS Connection Manager (DCM) manages all
database connections to remote DBMSs. This includes
processing requests to open and close database connec-
tions as well as performing all the low-level I/O opera-
tions associated with the connections. Within the IDI,
each database has at most one active connection associ-
ated with it and each connection has zero or more query
result streams or generators associated with it but only
one generator may be active.

The Query Manager (QM) is responsible for process-
ing IDIL queries and managing their results. IDIL
queries are processed by translating them into SQL

680 KNOWLEDGEREPRESENTATION

Database
Declarations

I

. . .

Figure 3: The IDI includes four main components: the
Schema Manager manages the schema information for all de-
clared databases; the Connection Manager handles connections
to remote DBMSs; the Query Manager is responsible for pro-
cessing IDIL queries and their results; and the Cache Manager
controls the cache of query results in accordance with the ad-
vice supplied by the application.

which is then sent to the appropriate DBMS by the
DCM. If the query is successfully executed by the
DBMS then the QM returns a generator for the result
relation. A generator is simply an abstract data type
used to represent the result of an IDIL query. There are
two basic type of operations which may be performed
on a generator: (a) get the next tuple from the result
relation and (b) terminate the generator (i.e., discard
any remaining tuples). Generators are actually created
and managed by the DCM since there is more than one
possible representation for a result relation, e.g., it may
be a result stream from a DBMS or a cache element.
The QM merely passes generators to the DCM along
with requests for the next tuple or termination.

The Cuche Munager is responsible for managing the
cache of query results. This includes identifying IDIL
queries for which the results exist in the cache, caching
query results, and replacing cache elements. In addi-
tion, our design allows the AI system to provide the
cache manager with u&ice to help it decide how to
manage its cache and make the following kinds of crit-
ical decisions:

(D pre-fetching - which relations (and when) should be
fetched in anticipation of needing them? This can
yield a significant increase in speed since the database
server is running as a separate process. This can
also be used to advantage in an environment in which
databases are accessed over a network in which links

are unreliable - critical database relations can be ac-
cessed in advance to ensure their availability when
needed.

e resuZtts caching - which query results should be saved
in the cache? Both base and derived relations vary
in their general utility. Some will definitely be worth
caching since they are likely to be accessed soon and
others not.

Q pery generalization - which queries can be usefully
generalized before submitting them to the DBMS?
Query generalization is a useful technique to reduce
the number of queries which must be made against
the database in many constraint satisfaction expert
systems. It is also a general technique to handle
expected subsequent queries after a “null answer”
[Motro, 19861.

0 replacement - which relations should be removed
when the cache becomes full?

Additional kinds of advice and examples can be found
in [O’Hare and Travis, 1989, O’Hare and Sheth, 19891.

As with any type of cache-based system, one of the
more difficult design issues involves the problem of
cache validation. That is, determining when to inval-
idate cache entries because of updates to the relevant
data in the DBMS. Our current implementation does
not attempt cache validation, which will be a focus of
future research. This still leaves a large class of applica-
tions for which cache validation is not a problem. These
includes access to databases that are write-protected
and updated infrequently, such as the Ojg;&l Airline
Guide database, and databases that are static relative
to the time scale of the AI application accessing them.

Moreover, this problem is common to any AI system
which gets some of its data from an external source and
stores in its knowledge base. Most current interfaces
between AI systems and databases (e.g. KEE Connec-
tion [Intellicorp, 19871) simply do not worry about this
problem at all. Our approach attempts to minimize
the AI system’s copying of database data in two ways.
First, by providing convenient and efficient access to
the information in the database, the AI system devel-
opers will have less need to make a local copy of the
data. Second, all of the database information that is
copied (i.e., in the cache) is isolated in one place and
can therefor be more easily “managed” - reducing the
problem to “cache validation”.

There are a number of approaches to the validation
problem which vary in completeness and ease of im-
plementation. Examples of possible components of a
cache validation system include: only caching relations
declared to be non-volatile, only caching data between
scheduled DB updates, using heuristics (e.g., a decay
curve) to estimate data validity, and implementing a
“snoopy cache” which monitors the database transac-
tions for updates which might invalidate the cached
data.

MCKAYETAL. 681

Min

Figure 4: The aggregate processing time is broken down in
terms of the three main stages of processing: translution, ex-
ecution, and coZ2ection. For each processing stage, the mini-
mum, mean, and maximum processing times are shown.

Current Status

Performance

The IDI, as described here, has been implemented in
Common Lisp and tested as a stand-alone query pro-
cessor against two different databases running on RTI
INGRES and is also being used as a query server for
the Unisys spoken language project. The performance
results obtained thus far are, at best, preliminary since
the size of the test suite was comparatively small and
the ID1 is just now being integrated with an AI system.
However, the results are encouraging and indicate the
potential for efficient database access afforded by the
IDI. The following summarize some of the more inter-
esting of these performance results.

One test set of IDIL queries used consisted of 48
queries where there were 22 unique queries, i.e., each
query was repeated at least once in the test set. The
queries ranged from simple (i.e., only project and select
operations were required) to complex (i.e., a four-way
join with two aggregation operations as well as projects
and selects). The size of the result relations varied from
zero to 17 tuples. The statistics presented here are
based on the mean processing times for 20 repetitions
of the test set of queries.

Figure 4 shows a breakdown of the aggregate process-
ing time in terms of the three main stages of processing:
translation (i.e., the time to translate and IDIL query
into SQL), ezecvtion (i.e., the elapsed time between
sending the SQL query to the DBMS and obtaining the
first tuple of the result relation), and collection (i.e.,
the time required to collect all the tuples in the result
relation and convert them into internal form). For each
processing stage, the minimum, mean, and maximum
processing times are shown. The cache was disabled
for these measurements so that a more accurate picture

682 KNOWLEDGEREPRESENTATION

Mean
Without
Caching

Empty
Cache

Nrazre~‘Y

Figure 5: Cache performance is measured for three cases:
(a) the without caching or base-line case where caching was
disabled, (b) the empty cache case where caching was enabled
but the cache was cleared before each repetition of the test set,
and (c) the non-empty cache case where the cache contained
the results for all queries in the test set.

of the relative processing times for each stage could be
established.

The differences in translation time reflect a depen-
dence on the number of relations in the IDIL query.
Similarly, the collection time is a function of the num-
ber of tuples in the result relation. In both cases, the
processing times are significantly less than the execu-
tion time which is effected by the complexity of the
SQL query, the communication overhead, and the load
on the remote DBMS host (since only elapsed time was
recorded).

Figure 5 indicates the effects of result caching on
performance. The results represent the mean process-
ing times (in seconds) for all queries. Three different
cases are represented: (a) the without caching or base-
line case where caching was disabled, (b) the empty
cache case where caching was enabled but the cache
was cleared before each repetition of the test set, and
(c) the non-empty cache c8se where the cache was con-
tained the results for all queries in the test set. The
difference between the base-line and empty cache cases
is due to the number of repeated queries (i.e., 26 out
of 48 were repeated). The fact that the base-line case
is more than twice the empty cache indicated that the
overhead required for result caching is not significant.
The non-empty cache case indicates the maximum p<r
tential benefit of result caching, i.e., nearly two orders
of magnitude improvement in performance. Clearly this
could only occur when the cache is “stacked” as in the
test. However, it does help to establish an upper limit
on the possible performance improvement afforded by
result caching. Obviously, as the number of repeated
queries increases so will the gain in performance.

Application of the ID1

Clearly, more detailed performance results need to be
obtained using more exhaustive test sets. It will be
particularly important to integrate the ID1 with an AI
system and measure its performance with a variety of
different applications. We are currently using the ID1
to provide a database server for the Unisys spoken lan-
guage understanding system and are investigating the
integration of the ID1 with the Intelligent System Server
and its Protem representation and reasoning engine,

The ID1 and the ISS. Protem is a hybrid system
containing both a frame-based representation system
and a logic-based reasoning component. The integrrt
tion of a frame-based representation system with a rela-
tional database management system is not straightfor-
ward. Our current approach labels some of the classes
in the frame system as “database classes”. Any knowl-
edge base activity which searches for the instances of
this class will be handed a stream of “database in-
stances” which will be the result of a query sent to the
database via the IDI. In order to avoid filling the knowl-
edge base memory with database information, these in-
stances are not installed as persistent knowledge base
objects but exist as “light weight objects” which are
garbage collected as soon as active processes stop ex-
amining them. They are also not “fully instantiated”.
That is, the values for the frame’s roles are not neces-
sarily installed. Instead, ifan attempt is made to access
their roles, additional database queries to retrieve the
information will generated automatically. Once again,
this information is not added as permanent knowledge
base data, but only last as long as the currently active
process is using it.

This approach has three advantages: it is relatively
simple to implement, transparent to the user and is
the key to isolating the data copy problem to cache
validation as stated earlier. Once the relationship be-
tween a database class and its database tables is de-
clared, the class and its instances can be treated as
any other knowledge base objects. However, without
the ID1 cache implementation, it would be prohibitively
slow.

The ID1 ATIS Server. The second AI system that
the ID1 is being used to support is a spoken language in-
terface to an Air level Information System database.
In this project, spoken queries are processed by a speech
recognition system and interpreted by the Unisys Pun-
dit natural language system [Hirschman, et. al., 19891.
The resulting interpretation is translated into a IDIL
query which is then sent to the ATIS Server for evalua-
tion. This server is a separate process running the ID1
which, in turn, submits SQL queries to an INGRES
database server.

The utravel agent” domain is one in which there is a
rich source of pragmatic information that can be used
to infer the user’s intentions underlying their queries.
These intentions can be used to generate advice to the

I manager to allow it to make intelligent choices cache
about
ment.

query generalizations, pre-fetching and replace-
We currently have an initial ATIS server running

and will be collecting statistics on its transactions which
can then be used to define a effective advice strategy.

Conclusion

Although the implementation of the ID1 is not com-
plete, it does provide a solid foundation for easily cre-
ating a sophisticated interface to existing DBMSs. The
key characteristics of ID1 are efficiency, simplicity of
use, and a high degree of portability which make it an
ideal choice for supporting a variety of AI and related
applications which require access to remote DBMSs.

Among the various extensions to the IDI that have
been planned for the future, most involve the Cache
Manager. At present, the implementation of the CM
has been focused on efficient result caching and most
other cache management functions have not been im-
plemented. One of the first steps will be to impose
a parameterized limit on the size of the cache and to
implement a cache replacement strategy. Other exten-
sions to the CM include cache validation, and the abil-
ity to perform DBMS-like operations on cache elements
[O’Hare and Sheth, 19891.

If the ID1 is extended so that it is capable of perform-
ing DBMS-like operations on the contents of its cache
then, given an IDIL query, it will have three general
courses of action which it may take to produce the re-
sults: (a) the entire IDIL query can be translated into
SQL and sent to the remote DBMS for execution; (b)
the entire IDIL query can be executed locally by the
ID1 (including simple retrieval from the cache); and (c)
the IDIL query can be decomposed so that part of it
is executed on the remote DBMS and part of it is exe-
cuted locally by the IDI. The decision of which action
to take would depend on a number of factors includ-
ing the current contents of the cache and the estimated
costs for each alternative.

References

[Abarbanel and Wilhams,1986] R. Abarbanel and M.
Williams, “A Relational Representation for Knowledge
Bases,“, Technical Report, Intellicorp, Mountain View,
CA, April 1986.

[Bocca, 19861 J. Bocca, “EDUCE a Marriage of Conve-
nience: Prolog and a Relational DBMS,” Third Sympo-
sium on Logic Progra mming, Salt hlce City, Sept. 1986,
pp. 36-45.

[Brodie, 19881 M. Brodie, uFutu.re Intelligent Informa-
tion Systems: AI and Database Technologies Working
Together” in Readings in Artificial Intelligence and
Databases, Morgan Kaufman, San Mateo, CA, 1988.

[Ceri, et. al., 19861 S. Ceri, G. Gottlob, and G. Wiederhold,
“Interfacing Relational Databases and Prolog Efficiently,”
Proc. of the 1st Intl. Conf. on Expert Database Systems,
South Carolina, April 1986.

MCKAY ET AL. 683

[Chakravarthy, et. al., 19821 U.. Chakravarthy, J. Minker,
and D. Tran, “Interfacing Predicate Logic Languages
and Relational Databases,” in Proceedings of the First
International Logic Programming Conference, pp. 91-98,
September 1982.

[Chamberhn, et. ah, 19761 D. Chamber&n, el al.. ‘SE-
QUELZ: A Unified Approach to Data Definition, Manip-
ulation, and Control”, IBM Journal of R&D, 20, 560-575,
1976.

[Chang, 19781 C. Chang, “DEDUCE 2: Further investiga-
tions of deduction in relational databases,” in Logic and
Database+ ed. H. Gallaire, pp. 201-236, New York, 1978.

[Chang and Walker, 19841 C. Chang and A. Walker,
“PROSQL: A Prolog Programming Interface with
SQL/D&” Proc. of the 1st Intl. Workshop on Expert
Database Systems, Kiawah Island, South Carolina, Octo-
ber 1984.

[Chimenti, et. al., 19871 D. Chimenti, A. O’Hare, R. Krish-
namurthy, S. Naqvi, S. Tsur, C. West, and C. Zaniolo,
“An Overview of the LDL System,” IEEE Data Engi-
neering, vol. 10, no. 4, December 1987, pp. 52-62.

[Dahl, et. al., 19901 D. Dahl, L. Norton, D. McKay, M.
Linebarger and L. Hirschman, “Management and Evahra-
tion of Interactive Dialogue in the Air Travel Information
System Domain”, submitted to The DARPA Workshop
on Speech and Natural Language, June 2427,1990, Hid-
den Valley, PA.

[Finin, et. al., 19891 Tim Finin, Rich Fritzson, Don Mckay,
Robin McEntire, and Tony O’Hare, “The Intelligent Sys-
tem Server - Delivering AI to Complex Systems”, Pro-
ceedings of the IEEE International Worbhop on Tools
for Artificial Intelligence - Architectures, languages and
AZgorithms, March 1990.

[Fritzson and Finin, 19881 Rich Fritsson and Tim Finin,
“Protem - An Integrated Expert Systems Tool”, Tech-
nical Report LBS Technical Memo Number 84, Unisys
Paoli Research Center, May 1988.

[Hirschman, et. al., 19891 Lynette Hirschman,
Martha Palmer, John Dowding, Deborah Dahl, Marcia
Linebarger, Rebecca Passonneau, Fransois-Michel Lang,
Catherine Ball, and Carl Weir. The pundit natural-
language processing system. In AI Systems in Gotrem-
ment Conference. Computer Society of the IEEE, March
1989.

[Intellicorp, 19871 Intellicorp, “KEEConnection: A Bridge
Between Databases and Knowledge Bases”, An Intel-
licorp Technical Article, 1987.

[Ioannidis, et. al., 19881 Y, Ioannidis, J. Chen, M. Fried-
man, and M. Tsangaris, “BERMUDA - An Architec-
tural Perspective on Interfacing Prolog to a Database
Machine,” Proceedings of the Second International Con-
ference on Expert Database Systems, April 1988.

[Jarke, et. al., 19841 M. Jarke, J. Clifford, and Y. Vassiliou,
“An Optimizing Prolog Front-End to a Relational Query
System,” Proceedings of the 1984 A CM-SIGMOD Con-
ference on the Management of Data, Boston, MA, June
1984.

[Kellog, et. al., 1986] C. Kellogg, A. O’Hare, and L. Travis,
“Optimizing the Rule/Data Interface in a Knowledge

Management System,” in Proceedings of the 12th In-
ternational Conference on Very Large Databases, Kyoto,
Japan, 1986.

[Li, 19841 D. Li, A Prolog Database System, Research Stud-
ies Press, Letchworth, 1984.

[Minker, 19781 J. Minker, “An Experimental Relational
Data Base System Based on Logic,” in Logic and
Databases, ed. J. Minker, Plenum Press, New York, 1978.

[Morris, 19881 K. Morris, J. Naughton, Y. Saraiya, J. Ull-
man, and A. Van Gelder, “YAWN! (Yet Another Window
on NAIL!),” IEEE Data Engineering, vol. 10, no. 4, De-
cember 1987, pp. 28-43.

[Motro, 19861 Amihai Motro, UQuery Generalization:
A Method for interpreting Null Answers”, in Ex-
pert Database Systems, ed. L. Kerschberg, Ben-
jamin/Cummings, Menlo Park CA, 1986.

[Naish and Thorn, 19831 L. Naish and J. A. Thorn, “The
MU-Prolog Deductive Database,” Technical Report 83-
10, Department of Computer Science, University of Mel-
bourne, Australia, 1983.

[O’Hare, 19871 A. O’Hare, Towards Declarative Control
of Computational Deduction, University of Wisconsin-
Madison PhD Thesis, June 1987.

[O’Hare, 19891 A. O’Hare, uThe Intelligent Database Inter-
face Languagen, Technical Report, Unisys Paoli Research
Center, June 1989.

[O’Hare and Sheth, 19891 A. O’Hare and A. Sheth, “The
interpreted-compiled range of AI/DB systems”, SIGMOD
Record, 18(l), March 1989.

[O’Hare and Travis, 19891 A O’Hare and L. Travis, “The
KMS Inference Engine: Rationale and Design Objec-
tivesn , Technical Report TM-8484/003/00, Unisys - West
Coast Research Center, 1989.

[O’Hare and Sheth, 19891 Anthony B. O’Hare and Amit
Sheth. The architecture of BrAID: A system for efi-
cient AI’DB Integration. Technical Report PRC-LBS-
8907, Unisys Paoli Research Center, June 1989.

[Reiter, 19781 R. Reiter, UDeductive Question-Answering
on Relational Data Bases,” in Logic and Databases, ed.
J. Minker, Plenum Press, New York, 1978.

[Sheth, et. al., 19881 A. Sheth, D. van Buer, S. Russell, and
S. Dao, “Cache Management System: Preliminary Design
and Evaluation Criteria,” Unisys Technical Report TM-
8484/000/00, October 1988.

[Stonebreaker, et. al., 19871 M. Stonebraker, E. Hanson
and S. Potamianos, UA Rule Manager for Relational
Database Systems,” in The Postgres Papers, M. Stone-
braker and L. Rowe (eds), Memo UCM/ERL M86/85,
Univ. pf California, Berkeley, 1987.

[Van Buer, et. al., 19851 D. Van Buer, D. McKay, D. Ko-
gan, L. Hirschman, M. Heineman, and L. Travis, “‘The
Flexible Deductive Engine: An Environment for Proto-
typing Knowledge Based Systems,” Proceedings of the
Ninth International Joint Conference on Artificial Intel-
Zigence, Los Angeles CA, August 1985.

684 KNOWLEDGEREPRESENTATION

